YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Ergodic Properties of Convolution Operators in Group Algebras

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Ars Polona-ruch

Abstract

Let G be a locally compact abelian group and let L-1 (G) and M(G) be respectively the group algebra and the convolution measure algebra of G. For mu is an element of M(G), let T(mu)f = mu * f be the convolution operator on L-1(G). A measure mu is an element of M(G) is said to be power bounded if sup(n >= 0)parallel to mu(n)parallel to(1) < infinity, where mu(n) denotes the nth convolution power of mu. We study some ergodic properties of the convolution operator T-mu, in the case when mu is power bounded. We also present some results concerning almost everywhere convergence of the sequence {T(mu)(n)f} in L-1 (G).

Description

Keywords

Locally Compact Abelian Group, Group Algebra, Measure Algebra, Convolution Operator, Convergence

Turkish CoHE Thesis Center URL

WoS Q

Q4

Scopus Q

Q3

Source

Volume

165

Issue

2

Start Page

321

End Page

340