YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Bayesian Inference for Geometric Process With Generalized Exponential Distribution

dc.authorscopusid 57224920023
dc.contributor.author Yilmaz, Asuman
dc.date.accessioned 2025-07-30T16:32:48Z
dc.date.available 2025-07-30T16:32:48Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Yilmaz, Asuman] Van Yuzuncu Yil Univ, Fac Econ & Adm Sci, Dept Econometr, TR-65080 Van, Turkiye en_US
dc.description.abstract There is no doubt that precise and effective estimation of model parameters is crucial in many fields. In this study, the Bayesian and classical estimators for the geometric process are discussed under the assumption that X1 has a generalized exponential distribution with parameters alpha,lambda. The maximum likelihood estimation method is used in classical parameter estimation. Then, the asymptotic distributions are constructed based on the maximum likelihood estimator. A test statistic is also developed based on maximum likelihood estimators for testing whether a=1 or not. The loss function and prior distribution play an important role in Bayesian inference. Therefore, Bayes estimators of the unknown model parameters are obtained under symmetric (squared error loss function) and asymmetric (linear exponential, and general entropy) loss functions using uniform and gamma priors on the ratio a and alpha,lambda parameters, respectively. Lindley and MCMC approximation methods are used for Bayesian calculations. An extensive Monte Carlo simulation study compared the efficiencies of classical estimators with Bayes estimators. It is seen that the Bayes estimators perform better than the classical estimators. A real-life example is also presented for application purposes. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1142/S0219477525500579
dc.identifier.issn 0219-4775
dc.identifier.issn 1793-6780
dc.identifier.scopus 2-s2.0-105010596506
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1142/S0219477525500579
dc.identifier.uri https://hdl.handle.net/20.500.14720/28072
dc.identifier.wos WOS:001527097800001
dc.identifier.wosquality Q3
dc.institutionauthor Yilmaz, Asuman
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Geometric Process en_US
dc.subject Generalized Exponential Distribution en_US
dc.subject Maximum Likelihood en_US
dc.subject Bayesian Estimation Methods en_US
dc.subject Monte Carlo Simulation en_US
dc.title Bayesian Inference for Geometric Process With Generalized Exponential Distribution en_US
dc.type Article en_US

Files