YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Development of an Artificial Neural Network Model for the Prediction of the Performance of a Silica-Gel Desiccant Wheel

dc.authorid Hurdogan, Ertac/0000-0003-1054-9964
dc.authorscopusid 55062169600
dc.authorscopusid 58795710700
dc.authorscopusid 55058825700
dc.authorscopusid 56167381500
dc.authorwosid Büyükalaca, Orhan/E-9565-2018
dc.authorwosid Hürdoğan, Ertaç/Afg-1277-2022
dc.contributor.author Uckan, Irfan
dc.contributor.author Yilmaz, Tuncay
dc.contributor.author Hurdogan, Ertac
dc.contributor.author Buyukalaca, Orhan
dc.date.accessioned 2025-05-10T17:42:25Z
dc.date.available 2025-05-10T17:42:25Z
dc.date.issued 2015
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Uckan, Irfan] Yuzuncu Yil Univ, Dept Mech Engn, TR-65080 Van, Turkey; [Yilmaz, Tuncay] Osmaniye Korkut Ata Univ, Dept Mech Engn, Osmaniye, Turkey; [Hurdogan, Ertac; Buyukalaca, Orhan] Osmaniye Korkut Ata Univ, Dept Energy Syst Engn, Osmaniye, Turkey en_US
dc.description Hurdogan, Ertac/0000-0003-1054-9964 en_US
dc.description.abstract This work presents mathematical equations derived from Artificial Neural Networks (ANNs) for the estimation of dry bulb temperature and specific humidity at the outlet of a desiccant wheel to predict useful data for designers and engineers. The neural network model comprises five inputs and two output neurons that define the outlet conditions (dry bulb temperature and specific humidity) of a desiccant wheel. The results obtained by the ANN model are compared with the actual data by using input variables. The results show that the mean absolute percentage errors for dry bulb temperature and specific humidity are found to be 0.80% and 1.56% respectively; and the correlation coefficient (R) values obtained are approximately 0.986 for both output variables. The root mean square errors, which is another significant point in this study, are found to be 0.54% and 0.18% for dry bulb temperature and specific humidity respectively. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/15435075.2014.895733
dc.identifier.endpage 1168 en_US
dc.identifier.issn 1543-5075
dc.identifier.issn 1543-5083
dc.identifier.issue 11 en_US
dc.identifier.scopus 2-s2.0-84930903443
dc.identifier.scopusquality Q2
dc.identifier.startpage 1159 en_US
dc.identifier.uri https://doi.org/10.1080/15435075.2014.895733
dc.identifier.uri https://hdl.handle.net/20.500.14720/15553
dc.identifier.volume 12 en_US
dc.identifier.wos WOS:000356821400012
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Taylor & Francis inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Desiccant Wheel en_US
dc.subject Artificial Neural Network en_US
dc.subject Modeling en_US
dc.subject Air Conditioning en_US
dc.subject Dehumidification en_US
dc.title Development of an Artificial Neural Network Model for the Prediction of the Performance of a Silica-Gel Desiccant Wheel en_US
dc.type Article en_US

Files