YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Usage of Machine Learning Algorithms for Establishing an Effective Protocol for the in Vitro Micropropagation Ability of Black Chokeberry (Aronia Melanocarpa (Michx.) Elliott)

dc.authorid Popescu, Monica/0000-0002-0757-2867
dc.authorid Demirel, Serap/0000-0002-1877-0797
dc.authorid Popescu, Gheorghe Cristian/0000-0001-5432-4607
dc.authorid Demirel, Fatih/0000-0002-6846-8422
dc.authorscopusid 57196947292
dc.authorscopusid 57202014946
dc.authorscopusid 55512271200
dc.authorscopusid 57196951511
dc.authorscopusid 55975504000
dc.authorwosid Motounu, Monica/F-5517-2010
dc.authorwosid Demirel, Serap/Adm-8433-2022
dc.authorwosid Demirel, Fatih/Aaw-3036-2020
dc.authorwosid Popescu, Gheorghe/Aac-3301-2019
dc.authorwosid Popescu, Monica/C-3624-2015
dc.authorwosid Popescu, Gheorghe Cristian/G-5287-2016
dc.contributor.author Demirel, Fatih
dc.contributor.author Ugur, Remzi
dc.contributor.author Popescu, Gheorghe Cristian
dc.contributor.author Demirel, Serap
dc.contributor.author Popescu, Monica
dc.date.accessioned 2025-05-10T17:18:21Z
dc.date.available 2025-05-10T17:18:21Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Demirel, Fatih] Igdir Univ, Fac Agr, Dept Agr Biotechnol, TR-76000 Igdir, Turkiye; [Ugur, Remzi] Gaziantep Univ, Nurdagi Vocat Sch, Dept Pk & Garden Plants, TR-27000 Gaziantep, Turkiye; [Popescu, Gheorghe Cristian] Natl Univ Sci & Technol POLITEHN Bucharest, Univ Ctr Pitesti, Dept Appl Sci & Environm Engn, Pitesti 110040, Romania; [Demirel, Serap] Van Yuzuncu Yil Univ, Fac Sci, Dept Mol Biol & Genet, TR-65080 Van, Turkiye; [Popescu, Monica] Natl Univ Sci & Technol POLITEHN Bucharest, Univ Ctr Pitesti, Dept Nat Sci, Pitesti 110040, Romania en_US
dc.description Popescu, Monica/0000-0002-0757-2867; Demirel, Serap/0000-0002-1877-0797; Popescu, Gheorghe Cristian/0000-0001-5432-4607; Demirel, Fatih/0000-0002-6846-8422 en_US
dc.description.abstract The primary objective of this research was to ascertain the optimal circumstances for the successful growth of black chokeberry (Aronia melanocarpa (Michx.) Elliott) using tissue culture techniques. Additionally, the study aimed to explore the potential use of machine learning algorithms in this context. The present research investigated a range of in vitro parameters such as total number of roots (TNR), longest root length (LRL), average root length (ARL), number of main roots (NMR), number of siblings (NS), shoot length (SL), shoot diameter (SD), leaf width (LW), and leaf length (LL) for Aronia explants cultivated in different media (Murashige and Skoog (MS) and woody plant medium (WPM)) with different concentrations (0, 0.5, 1, 1.5, and 2 mg L-1) of indole-3-butyric acid (IBA). The study showed that IBA hormone levels may affect WPM properties, affecting the LRL and ARL variables. Aronia explant media treated with 2 mg L-1 IBA had the greatest TNR, NMR, NS, SL, and SD values; 31.67 pieces, 2.37 pieces, 5.25 pieces, 66.60 mm, and 2.59 mm, in that order. However, Aronia explants treated with 1 mg L-1 IBA had the highest LW (9.10 mm) and LL (14.58 mm) values. Finally, Aronia explants containing 0.5 mg L-1 IBA had the greatest LRL (89.10 mm) and ARL (57.57 mm) values. In general, the results observed (TNR, LRL, ARL, NMR, NS, SL, SD, LW, and LL) indicate that Aronia explants exhibit superior growth and development in WPM (25.68 pieces, 68.10 mm, 51.64 mm, 2.17 pieces, 4.33 pieces, 57.95 mm, 2.49 mm, 8.08 mm, and 14.26 mm, respectively) as opposed to MS medium (20.27 pieces, 59.92 mm, 47.25 mm, 1.83 pieces, 3.57 pieces, 49.34 mm, 2.13 mm, 6.99 mm, and 12.21 mm, respectively). In the context of the in vitro culturing of Aronia explants utilizing MS medium and WPM, an analysis of machine learning models revealed that the XGBoost and SVM models perform better than the RF, KNN, and GP models when it comes to making predictions about those variables. In particular, the XGBoost model stood out due to the fact that it had the greatest R-squared value, and showed higher predictive ability in terms of properly forecasting values in comparison to actual outcomes. The findings of a linear regression (LR) analysis were used in order to conduct an efficacy study of the XGBoost model. The LR results especially confirmed the findings for the SD, NS, and NMR variables, whose R-squared values were more than 0.7. This demonstrates the extraordinary accuracy that XGboost has in predicting these particular variables. As a consequence of this, it is anticipated that it will be beneficial to make use of the XGboost model in the dosage optimization and estimation of in vitro parameters in micropropagation studies of the Aronia plant for further scientific investigation. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.3390/horticulturae9101112
dc.identifier.issn 2311-7524
dc.identifier.issue 10 en_US
dc.identifier.scopus 2-s2.0-85175327690
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.3390/horticulturae9101112
dc.identifier.uri https://hdl.handle.net/20.500.14720/9655
dc.identifier.volume 9 en_US
dc.identifier.wos WOS:001099145100001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Aronia en_US
dc.subject Basal Media en_US
dc.subject Modeling en_US
dc.subject Predicting en_US
dc.subject Optimizing en_US
dc.subject Artificial Intelligence en_US
dc.subject Xgboost en_US
dc.subject Svm en_US
dc.title Usage of Machine Learning Algorithms for Establishing an Effective Protocol for the in Vitro Micropropagation Ability of Black Chokeberry (Aronia Melanocarpa (Michx.) Elliott) en_US
dc.type Article en_US

Files