YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Statistical Inference for Α-Series Process With the Inverse Gaussian Distribution

dc.authorid Aydogdu, Halil/0000-0001-5337-5277
dc.authorscopusid 36910855300
dc.authorscopusid 35504139300
dc.authorscopusid 8872498000
dc.authorwosid Türkşen, Özlem/Aai-4746-2020
dc.authorwosid Aydoğdu, Halil/Aah-3036-2020
dc.contributor.author Kara, Mahmut
dc.contributor.author Turksen, Ozlem
dc.contributor.author Aydogdu, Halil
dc.date.accessioned 2025-05-10T17:28:35Z
dc.date.available 2025-05-10T17:28:35Z
dc.date.issued 2017
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Kara, Mahmut] Yuzuncu Yil Univ, Dept Stat, Fac Sci, Van, Turkey; [Turksen, Ozlem; Aydogdu, Halil] Ankara Univ, Dept Stat, Fac Sci, TR-06560 Ankara, Turkey en_US
dc.description Aydogdu, Halil/0000-0001-5337-5277 en_US
dc.description.abstract Statistical inferences for the geometric process (GP) are derived when the distribution of the first occurrence time is assumed to be inverse Gaussian (IG). An alpha-series process, as a possible alternative to the GP, is introduced since the GP is sometimes inappropriate to apply some reliability and scheduling problems. In this study, statistical inference problem for the alpha-series process is considered where the distribution of first occurrence time is IG. The estimators of the parameters alpha, mu, and sigma(2) are obtained by using the maximum likelihood (ML) method. Asymptotic distributions and consistency properties of the ML estimators are derived. In order to compare the efficiencies of the ML estimators with the widely used nonparametric modified moment (MM) estimators, Monte Carlo simulations are performed. The results showed that the ML estimators are more efficient than the MM estimators. Moreover, two real life datasets are given for application purposes. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/03610918.2016.1139127
dc.identifier.endpage 4950 en_US
dc.identifier.issn 0361-0918
dc.identifier.issn 1532-4141
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-85013036510
dc.identifier.scopusquality Q3
dc.identifier.startpage 4938 en_US
dc.identifier.uri https://doi.org/10.1080/03610918.2016.1139127
dc.identifier.uri https://hdl.handle.net/20.500.14720/12087
dc.identifier.volume 46 en_US
dc.identifier.wos WOS:000405864600049
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Taylor & Francis inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Alpha-Series Process en_US
dc.subject Asymptotic Normality en_US
dc.subject Inverse Gaussian Distribution en_US
dc.subject Maximum Likelihood Estimate en_US
dc.subject Modified Moment Estimate en_US
dc.title Statistical Inference for Α-Series Process With the Inverse Gaussian Distribution en_US
dc.type Article en_US

Files