YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Copula-Based Data Augmentation and Machine Learning for Predicting Tensile Strength of 3D-Printed PLA Under Anisotropic Conditions

dc.authorid Saylik, Ahmet/0000-0003-1801-0082
dc.authorscopusid 57225193838
dc.authorscopusid 57212220264
dc.authorscopusid 57190570577
dc.authorwosid Kosedag, Ertan/Abd-9243-2021
dc.authorwosid Saylik, Ahmet/Aac-9875-2022
dc.authorwosid Etem, Taha/Aah-4157-2020
dc.authorwosid Saylık, Ahmet/Aac-9875-2022
dc.contributor.author Saylik, Ahmet
dc.contributor.author Kosedag, Ertan
dc.contributor.author Etem, Taha
dc.date.accessioned 2025-07-30T16:32:50Z
dc.date.available 2025-07-30T16:32:50Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Saylik, Ahmet] Mus Alparslan Univ, Dept Mech Engn, Mus, Turkiye; [Kosedag, Ertan] Van Yuzuncu Yil Univ, Dept Mech Engn, Van, Turkiye; [Etem, Taha] Cankiri Karatekin Univ, Dept Comp Engn, Cankiri, Turkiye en_US
dc.description Saylik, Ahmet/0000-0003-1801-0082; en_US
dc.description.abstract In this study, 48 polylactic acid (PLA) samples were produced via 3D printing, incorporating four infill geometries (gyroid, lattice, honeycomb, and linear), four infill rates (15%-60%), and three printing directions (x, y, z). Tensile testing revealed anisotropic mechanical behavior, with the x-direction consistently outperforming y- and z-directions due to layer adhesion dynamics. A machine learning framework leveraging copula-based data augmentation was developed to predict tensile strength at untested infill rates. The framework employed least squares regression, support vector machines (SVM), Gaussian process regression (GPR), and artificial neural networks (ANNs), augmented with 20,000 synthetic data points to enhance model robustness. Results demonstrated that gyroid geometry in the x-direction achieved the highest tensile strength (53.4 MPa at 60% infill), while Lattice patterns underperformed. Data augmentation improved prediction accuracy across all models, with SVM achieving the lowest RMSE (1.53 MPa) and R2 values exceeding 0.87. This study highlights the critical interplay of infill parameters, directional anisotropy, and machine learning in optimizing 3D-printed PLA components for industrial applications, offering a data-driven pathway to reduce experimental costs and accelerate material design. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1002/app.57533
dc.identifier.issn 0021-8995
dc.identifier.issn 1097-4628
dc.identifier.scopus 2-s2.0-105009527346
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1002/app.57533
dc.identifier.uri https://hdl.handle.net/20.500.14720/28101
dc.identifier.wos WOS:001519949600001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Applications en_US
dc.subject Manufacturing en_US
dc.subject Mechanical Properties en_US
dc.subject Thermoplastics en_US
dc.title Copula-Based Data Augmentation and Machine Learning for Predicting Tensile Strength of 3D-Printed PLA Under Anisotropic Conditions en_US
dc.type Article en_US

Files