YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An Improved Fast Error Convergence Topology for Pdα-Type Fractional-Order Ilc

dc.authorid Alsinai, Ammar/0000-0002-5221-0574
dc.authorid Mahsud, Minhas/0000-0002-1800-8305
dc.authorid Riaz, Saleem/0000-0001-7818-2578
dc.authorscopusid 57219649845
dc.authorscopusid 56158374100
dc.authorscopusid 57195522471
dc.authorscopusid 54789405000
dc.authorscopusid 57222957516
dc.authorscopusid 35185892900
dc.authorwosid Riaz, Saleem/Aar-4436-2021
dc.authorwosid Cancan, Murat/Aab-4391-2020
dc.authorwosid Alsinai, Ammar/Aak-1025-2021
dc.contributor.author Riaz, Saleem
dc.contributor.author Lin, Hui
dc.contributor.author Mahsud, Minhas
dc.contributor.author Afzal, Deeba
dc.contributor.author Alsinai, Ammar
dc.contributor.author Cancan, Murat
dc.date.accessioned 2025-05-10T17:14:49Z
dc.date.available 2025-05-10T17:14:49Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Riaz, Saleem; Lin, Hui] Northwestern Polytech Univ, Sch Automat, Xian 170072, Shaanxi, Peoples R China; [Mahsud, Minhas] Natl Univ Sci & Technol, Mil Coll Signals, Islamabad, Pakistan; [Afzal, Deeba] Univ Lahore, Dept Math & Stat, Lahore, Pakistan; [Alsinai, Ammar] Univ Mysore, Dept Studies Math, Manasagangotri, Karnataka, India; [Cancan, Murat] Van Yuzuncu Yil Univ, Fac Educ, Zeve Campus, TR-65080 Tusba, Van, Turkey en_US
dc.description Alsinai, Ammar/0000-0002-5221-0574; Mahsud, Minhas/0000-0002-1800-8305; Riaz, Saleem/0000-0001-7818-2578 en_US
dc.description.abstract The monotonic convergence of the PD alpha-type fractional-order iterative learning control algorithm is considered for a class of fractional-order linear systems. First, a theoretical analysis of the monotonic convergence of 1st and 2nd order PD alpha-type control algorithms is carried out in the typical terms of Lebesgue-p (L-p), and the sufficient conditions for their monotonic convergence are comprehended and extended to the case of N-order control algorithms; then the speed of convergence of the two is explained in detail. It is concluded that the conditions for convergence of the control algorithm are determined by the learning gain and the system's properties are together determined. Simulation experiment verifies the accuracy of proposed scheme and the validity of the control algorithm. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.1080/09720502.2021.1984567
dc.identifier.endpage 2019 en_US
dc.identifier.issn 0972-0502
dc.identifier.issn 2169-012X
dc.identifier.issue 7 en_US
dc.identifier.scopus 2-s2.0-85118599959
dc.identifier.scopusquality Q2
dc.identifier.startpage 2005 en_US
dc.identifier.uri https://doi.org/10.1080/09720502.2021.1984567
dc.identifier.uri https://hdl.handle.net/20.500.14720/8453
dc.identifier.volume 24 en_US
dc.identifier.wos WOS:000715739200001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Iterative Learning Control (Ilc) en_US
dc.subject Fractional-Order Ilc en_US
dc.subject Lebesgue-P (L-P) Norm en_US
dc.subject Error Convergence en_US
dc.title An Improved Fast Error Convergence Topology for Pdα-Type Fractional-Order Ilc en_US
dc.type Article en_US

Files