YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The Effect of Titanium Dioxide-Supported Cdse Photocatalysts Enhanced for Photocatalytic Glucose Electrooxidation Under Uv Illumination

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Abstract

The wetness impregnation method was used to synthesize 0.1% CdSe/TiO2 photocatalysts with different atomic molar ratios (90-10, 70-30, 50-50, and 30-70). These catalysts were characterized by XRD, SEM-EDX and mapping, TEM-EDS, UV-VIS spectroscopy, fluorescence spectroscopy, XPS, TPR, TPO, and TPD analyses. Cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) analyses were performed to examine the photocatalytic activity for photocatalytic fuel cells (PFCs) in glucose solution in the dark and under UV illumination. The characterization analyses revealed that anatase TiO2 formed the catalyst and electronic structure and surface properties changed when doped with metal. The photocatalytic glucose electrooxidation (PGE) results demonstrate that the 0.1% CdSe(50-50)/TiO2 catalyst has higher photocatalytic activity, stability, and resistance than other catalysts both in the dark (2.71 mA cm(-2)) and under UV illumination (7.20 mA cm(-2)). These results offer a promising new type of photocatalyst for PFC applications. (C) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Description

Kivrak, Hilal/0000-0001-8001-7854

Keywords

Cadmium, Selenium, Titanium Dioxide, Uv Illumination, Photocatalytic Glucose, Electrooxidation

Turkish CoHE Thesis Center URL

WoS Q

Q1

Scopus Q

Q1

Source

Volume

47

Issue

49

Start Page

21130

End Page

21145