YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Hydrogen Production Performance and Kinetic Behavior From Sodium Borohydride Hydrolysis With Tio2-Supported Co-Mo Catalyst

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Heidelberg

Abstract

In the study, a new catalyst was designed and synthesized by chemical reduction and precipitation method by impregnating the Co-Mo-B catalyst with different support materials (TiO2, Al2O3, and CeO2) in order to obtain fast hydrogen from sodium boron hydride hydrolysis. According to the support material, their catalytic activities were observed as Co-Mo-B@TiO2 > Co-Mo-B@CeO2 > Co-Mo-B@Al2O3 > Co-Mo-B. Other experimental studies were continued with the Co-Mo-B@TiO2 catalyst, which exhibited the strongest catalytic activity. BET, XRD, SEM, and EDX analyses were performed with the analytical method and their characteristics were determined. For sodium boron hydride hydrolysis of the catalyst, firstly, the optimum (Co/Mo and Co-Mo@TiO2) ratios were determined. The optimal % NaOH and NaBH4 mass concentrations, the amount of catalyst, and the effect of temperature on the hydrogen production rate were investigated. It was observed that the reaction time was shortened and the hydrogen production rate increased at 30-50 & DEG;C temperature. Kinetic parameters were calculated accordingly. The reaction rate order was determined as 0.62 from the nth order. The activation energy from the Arrhenius equation was be calculated as 40.106 kJ/mol. Hydrogen production rate at 30 & DEG;C was found to be 19.968 mL/min & BULL;g & BULL;cat.

Description

Keywords

Catalyst, Hydrogen, Nabh4, Hydrolysis, Co-Mo-B@Tio2

Turkish CoHE Thesis Center URL

WoS Q

Q3

Scopus Q

Q2

Source

Volume

29

Issue

9

Start Page

3713

End Page

3721