Approximation by a New Stancu Variant of Generalized (Λ, Μ)-Bernstein Operators
dc.authorid | Aslan, Resat/0000-0002-8180-9199 | |
dc.authorscopusid | 39760964200 | |
dc.authorscopusid | 57223898902 | |
dc.authorscopusid | 54403518300 | |
dc.authorscopusid | 23152241800 | |
dc.authorwosid | Cai, Qing-Bo/Aae-6568-2022 | |
dc.authorwosid | Aslan, Reşat/Gyu-8340-2022 | |
dc.authorwosid | Özger, Faruk/V-7272-2017 | |
dc.authorwosid | Srivastava, Hari/N-9532-2013 | |
dc.contributor.author | Cai, Qing-Bo | |
dc.contributor.author | Aslan, Resat | |
dc.contributor.author | Ozger, Faruk | |
dc.contributor.author | Srivastava, Hari Mohan | |
dc.date.accessioned | 2025-05-10T17:23:10Z | |
dc.date.available | 2025-05-10T17:23:10Z | |
dc.date.issued | 2024 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Cai, Qing-Bo] Quanzhou Normal Univ, Sch Math & Comp Sci, Key Lab Intelligent Comp & Informat Proc, Fujian Prov Key Lab Data Intens Comp, Quanzhou 362000, Peoples R China; [Aslan, Resat] Van Yuzuncu Yil Univ, Dept Math, TR-65080 Van, Turkiye; [Ozger, Faruk] Igdir Univ, Dept Comp Engn, TR-76000 Igdir, Turkiye; [Srivastava, Hari Mohan] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada; [Srivastava, Hari Mohan] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan; [Srivastava, Hari Mohan] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea; [Srivastava, Hari Mohan] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan; [Srivastava, Hari Mohan] Chung Yuan Christian Univ, Dept Appl Math, Taoyuan 320314, Taiwan | en_US |
dc.description | Aslan, Resat/0000-0002-8180-9199 | en_US |
dc.description.abstract | The primary objective of this work is to explore various approximation properties of Stancu variant generalized (lambda, mu)-Bernstein operators. Various moment estimates are analyzed, and several aspects of local direct approximation theorems are investigated. Additionally, further approximation features of newly defined operators are delved into, such as the Voronovskaya-type asymptotic theorem and pointwise estimates. By comparing the proposed operator graphically and numerically with some linear positive operators known in the literature, it is evident that much better approximation results are achieved in terms of convergence behavior, calculation efficiency, and consistency. Finally, the newly defined operators are used to obtain a numerical solution for a special case of the fractional Volterra integral equation of the second kind. | en_US |
dc.description.sponsorship | Natural Science Foundation of Fujian Province of China [2024J00000] | en_US |
dc.description.sponsorship | <B>Funding</B> This work is supported by the Natural Science Foundation of Fujian Province of China (Grant No. 2024J00000) . | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1016/j.aej.2024.07.015 | |
dc.identifier.endpage | 214 | en_US |
dc.identifier.issn | 1110-0168 | |
dc.identifier.issn | 2090-2670 | |
dc.identifier.scopus | 2-s2.0-85198704247 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 205 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.aej.2024.07.015 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/10808 | |
dc.identifier.volume | 107 | en_US |
dc.identifier.wos | WOS:001274369800001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Lambda-Bernstein Operators | en_US |
dc.subject | Computer Graphics | en_US |
dc.subject | Fractional Integral Equations | en_US |
dc.subject | Error Analysis | en_US |
dc.subject | Pointwise Estimates | en_US |
dc.title | Approximation by a New Stancu Variant of Generalized (Λ, Μ)-Bernstein Operators | en_US |
dc.type | Article | en_US |