YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Approximation by a New Stancu Variant of Generalized (Λ, Μ)-Bernstein Operators

dc.authorid Aslan, Resat/0000-0002-8180-9199
dc.authorscopusid 39760964200
dc.authorscopusid 57223898902
dc.authorscopusid 54403518300
dc.authorscopusid 23152241800
dc.authorwosid Cai, Qing-Bo/Aae-6568-2022
dc.authorwosid Aslan, Reşat/Gyu-8340-2022
dc.authorwosid Özger, Faruk/V-7272-2017
dc.authorwosid Srivastava, Hari/N-9532-2013
dc.contributor.author Cai, Qing-Bo
dc.contributor.author Aslan, Resat
dc.contributor.author Ozger, Faruk
dc.contributor.author Srivastava, Hari Mohan
dc.date.accessioned 2025-05-10T17:23:10Z
dc.date.available 2025-05-10T17:23:10Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Cai, Qing-Bo] Quanzhou Normal Univ, Sch Math & Comp Sci, Key Lab Intelligent Comp & Informat Proc, Fujian Prov Key Lab Data Intens Comp, Quanzhou 362000, Peoples R China; [Aslan, Resat] Van Yuzuncu Yil Univ, Dept Math, TR-65080 Van, Turkiye; [Ozger, Faruk] Igdir Univ, Dept Comp Engn, TR-76000 Igdir, Turkiye; [Srivastava, Hari Mohan] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada; [Srivastava, Hari Mohan] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan; [Srivastava, Hari Mohan] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea; [Srivastava, Hari Mohan] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan; [Srivastava, Hari Mohan] Chung Yuan Christian Univ, Dept Appl Math, Taoyuan 320314, Taiwan en_US
dc.description Aslan, Resat/0000-0002-8180-9199 en_US
dc.description.abstract The primary objective of this work is to explore various approximation properties of Stancu variant generalized (lambda, mu)-Bernstein operators. Various moment estimates are analyzed, and several aspects of local direct approximation theorems are investigated. Additionally, further approximation features of newly defined operators are delved into, such as the Voronovskaya-type asymptotic theorem and pointwise estimates. By comparing the proposed operator graphically and numerically with some linear positive operators known in the literature, it is evident that much better approximation results are achieved in terms of convergence behavior, calculation efficiency, and consistency. Finally, the newly defined operators are used to obtain a numerical solution for a special case of the fractional Volterra integral equation of the second kind. en_US
dc.description.sponsorship Natural Science Foundation of Fujian Province of China [2024J00000] en_US
dc.description.sponsorship <B>Funding</B> This work is supported by the Natural Science Foundation of Fujian Province of China (Grant No. 2024J00000) . en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.aej.2024.07.015
dc.identifier.endpage 214 en_US
dc.identifier.issn 1110-0168
dc.identifier.issn 2090-2670
dc.identifier.scopus 2-s2.0-85198704247
dc.identifier.scopusquality Q1
dc.identifier.startpage 205 en_US
dc.identifier.uri https://doi.org/10.1016/j.aej.2024.07.015
dc.identifier.uri https://hdl.handle.net/20.500.14720/10808
dc.identifier.volume 107 en_US
dc.identifier.wos WOS:001274369800001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Lambda-Bernstein Operators en_US
dc.subject Computer Graphics en_US
dc.subject Fractional Integral Equations en_US
dc.subject Error Analysis en_US
dc.subject Pointwise Estimates en_US
dc.title Approximation by a New Stancu Variant of Generalized (Λ, Μ)-Bernstein Operators en_US
dc.type Article en_US

Files