YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An Anfis Model To Prediction of Corrosion Resistance of Coated Implant Materials

dc.authorid Dikici, Burak/0000-0002-7249-923X
dc.authorid Tuntas, Remzi/0000-0001-7973-2412
dc.authorscopusid 55874010700
dc.authorscopusid 23501298200
dc.authorwosid Dikici, Burak/A-2054-2009
dc.contributor.author Tuntas, Remzi
dc.contributor.author Dikici, Burak
dc.date.accessioned 2025-05-10T17:03:33Z
dc.date.available 2025-05-10T17:03:33Z
dc.date.issued 2017
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Tuntas, Remzi] Yuzuncu Yil Univ, Fac Business, Dept Business Adm, TR-65400 Van, Turkey; [Dikici, Burak] Ataturk Univ, Dept Met & Mat Engn, TR-25240 Erzurum, Turkey en_US
dc.description Dikici, Burak/0000-0002-7249-923X; Tuntas, Remzi/0000-0001-7973-2412 en_US
dc.description.abstract In the present study, an adaptive neuro-fuzzy inference system (ANFIS) model has been used for predicting the corrosion resistance of AA6061-T4 alloy coated with micro-/nano-hydroxyapatite (HA) powders by sol-gel technique. The input parameters of the model consist of the HA powder size (micro-/nanoscale, 35 mu m/20 nm), coating thickness (30, 60 and 85 mu m) and potential values, while the output parameter is corrosion current density. The performance of proposed ANFIS model was tested on the potentiodynamic polarization scanning (PDS) curves by comparing experimental and the theoretical results of the coatings. The results showed that the generated PDS curves of the coatings are in definitely acceptable levels with obtained results in our experimental reference study. Then, the combined effect of arbitrary selected coating thickness and HA powder size on corrosion behaviour of the coatings was also predicted by trained ANFIS model without using any experimental data. And finally, the predicted results for the arbitrary selected coating thicknesses were compared by validation tests. The results showed that the ANFIS has potential to be used in industrial applications of biomedical implant materials coated with HA without performing any experiments after detailed systematic studies in the near future. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s00521-017-3103-8
dc.identifier.endpage 3627 en_US
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.issue 11 en_US
dc.identifier.scopus 2-s2.0-85021262138
dc.identifier.scopusquality Q1
dc.identifier.startpage 3617 en_US
dc.identifier.uri https://doi.org/10.1007/s00521-017-3103-8
dc.identifier.uri https://hdl.handle.net/20.500.14720/5737
dc.identifier.volume 28 en_US
dc.identifier.wos WOS:000412313900037
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Adaptive Neuro-Fuzzy Inference System en_US
dc.subject Anfis en_US
dc.subject Corrosion en_US
dc.subject Modelling en_US
dc.subject Potentiodynamic Polarization en_US
dc.subject Biomaterials en_US
dc.title An Anfis Model To Prediction of Corrosion Resistance of Coated Implant Materials en_US
dc.type Article en_US

Files