YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A New Risk Prediction Model for the Assessment of Myocardial Injury in Elderly Patients Undergoing Non-Elective Surgery

dc.authorid Korucu, Berke Cenktug/0000-0001-6488-988X
dc.authorid Babaoglu, Mert/0000-0003-4544-9584
dc.authorid Mazlum, Ahmet Furkan/0000-0001-5203-4681
dc.authorid Oguz, Mustafa/0000-0002-5165-1212
dc.authorid Saylik, Faysal/0000-0003-3165-6769
dc.authorid Altinisik, Hatice/0000-0002-7079-4948
dc.authorid Yavuz, Samet/0000-0002-1913-3001
dc.authorwosid Çiçek, Vedat/Gpk-5234-2022
dc.authorwosid Cinar, Tufan/Abd-4630-2020
dc.authorwosid Babaoğlu, Mert/Jxy-8686-2024
dc.authorwosid Hayiroglu, Mert/Aaq-3365-2021
dc.authorwosid Şaylık, Faysal/Gqq-3347-2022
dc.authorwosid Yavuz, Samet/Gpp-3863-2022
dc.authorwosid Oguz, Mustafa/Hkv-5400-2023
dc.contributor.author Cicek, Vedat
dc.contributor.author Babaoglu, Mert
dc.contributor.author Saylik, Faysal
dc.contributor.author Yavuz, Samet
dc.contributor.author Mazlum, Ahmet Furkan
dc.contributor.author Genc, Mahmut Salih
dc.contributor.author Bagci, Ulas
dc.date.accessioned 2025-05-10T17:24:59Z
dc.date.available 2025-05-10T17:24:59Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Cicek, Vedat; Bagci, Ulas] Northwestern Univ, Dept Radiol, Machine & Hybrid Intelligence Lab, Chicago, IL 60611 USA; [Babaoglu, Mert; Yavuz, Samet; Altinisik, Hatice; Oguz, Mustafa] Hlth Sci Univ, Sultan II Abdulhamid Han Training & Res Hosp, Dept Cardiol, TR-34668 Istanbul, Turkiye; [Saylik, Faysal] Hlth Sci Univ, Van Training & Res Hosp, Dept Cardiol, TR-65300 Van, Turkiye; [Mazlum, Ahmet Furkan; Genc, Mahmut Salih] Hlth Sci Univ, Sultan II Abdulhamid Han Training & Res Hosp, Dept Gen Surg, TR-34668 Istanbul, Turkiye; [Korucu, Berke Cenktug] Jersey City Med Ctr, Dept Internal Med, Rutgers Robert Wood Johnson Barnabas Hlth, Jersey City, NJ 07302 USA; [Hayiroglu, Mert Ilker] Dr Siyami Ersek Cardiovasc & Thorac Surg Res & Tra, Dept Cardiol, TR-34668 Istanbul, Turkiye; [Cinar, Tufan] Univ Maryland, Sch Med, Baltimore, MD 21201 USA en_US
dc.description Korucu, Berke Cenktug/0000-0001-6488-988X; Babaoglu, Mert/0000-0003-4544-9584; Mazlum, Ahmet Furkan/0000-0001-5203-4681; Oguz, Mustafa/0000-0002-5165-1212; Saylik, Faysal/0000-0003-3165-6769; Altinisik, Hatice/0000-0002-7079-4948; Genc, Mahmut Salih/0000-0001-7120-5191; Cinar, Tufan/0000-0001-8188-5020; Yavuz, Samet/0000-0002-1913-3001 en_US
dc.description.abstract Background: Currently, recommended pre-operative risk assessment models including the revised cardiac risk index (RCRI) are not very effective in predicting postoperative myocardial damage after non-elective surgery, especially for elderly patients. Aims: This study aimed to create a new risk prediction model to assess myocardial injury after non-cardiac surgery (MINS) in elderly patients and compare it with the RCRI, a well-known pre-operative risk prediction model. Materials and Methods: This retrospective study included 370 elderly patients who were over 65 years of age and had non-elective surgery in a tertiary hospital. Each patient underwent detailed physical evaluations before the surgery. The study cohort was divided into two groups: patients who had MINS and those who did not. Results: In total, 13% (48 out of 370 patients) of the patients developed MINS. Multivariable analysis revealed that creatinine, lymphocyte, aortic regurgitation (moderate-severe), stroke, hemoglobin, ejection fraction, and D-dimer were independent determinants of MINS. By using these parameters, a model called "CLASHED" was developed to predict postoperative MINS. The ROC analysis comparison demonstrated that the new risk prediction model was significantly superior to the RCRI in predicting MINS in elderly patients undergoing non-elective surgery (AUC: 0.788 vs. AUC: 0.611, p < 0.05). Conclusions: Our study shows that the new risk preoperative model successfully predicts MINS in elderly patients undergoing non-elective surgery. In addition, this new model is found to be superior to the RCRI in predicting MINS. en_US
dc.description.sponsorship NIH; [R01-CA246704]; [R01-CA240639]; [U01-DK127384-02S1]; [U01-CA268808] en_US
dc.description.sponsorship This research was funded by NIH grants: R01-CA246704, R01-CA240639, U01-DK127384-02S1, and U01-CA268808. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.3390/jcdd12010006
dc.identifier.issn 2308-3425
dc.identifier.issue 1 en_US
dc.identifier.pmid 39852284
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.3390/jcdd12010006
dc.identifier.uri https://hdl.handle.net/20.500.14720/11241
dc.identifier.volume 12 en_US
dc.identifier.wos WOS:001405865900001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Cardiac Revised Index en_US
dc.subject Elderly en_US
dc.subject Myocardial Injury en_US
dc.subject Non Elective Surgery en_US
dc.subject Pre-Op Risk en_US
dc.title A New Risk Prediction Model for the Assessment of Myocardial Injury in Elderly Patients Undergoing Non-Elective Surgery en_US
dc.type Article en_US

Files