YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Training Multi-Layer Perceptron Using Harris Hawks Optimization

dc.authorid Izci, Davut/0000-0001-8359-0875
dc.authorid Ekinci, Serdar/0000-0002-7673-2553
dc.authorid Eker, Erdal/0000-0002-5470-8384
dc.authorscopusid 57211714693
dc.authorscopusid 26031603700
dc.authorscopusid 57186395300
dc.authorscopusid 57201318149
dc.authorwosid Izci, Davut/T-6000-2019
dc.authorwosid Kayri, Murat/Hlh-4902-2023
dc.authorwosid Ekinci, Serdar/Aaa-7422-2019
dc.contributor.author Eker, Erdal
dc.contributor.author Kayri, Murat
dc.contributor.author Ekinci, Serdar
dc.contributor.author Izci, Davut
dc.date.accessioned 2025-05-10T17:34:17Z
dc.date.available 2025-05-10T17:34:17Z
dc.date.issued 2020
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Eker, Erdal] Mus Alparslan Univ, Dept Mkt & Advertising, Mus, Turkey; [Kayri, Murat] Yuzuncu Yil Univ, Dept Comp & Instruct Technol, Van, Turkey; [Ekinci, Serdar] Batman Univ, Dept Comp Engn, Batman, Turkey; [Izci, Davut] Batman Univ, Vocat Sch Tech Sci, Batman, Turkey en_US
dc.description Izci, Davut/0000-0001-8359-0875; Ekinci, Serdar/0000-0002-7673-2553; Eker, Erdal/0000-0002-5470-8384 en_US
dc.description.abstract In this paper, Harris hawks optimization (HHO) algorithm has been proposed as an up-to-date meta-heuristic algorithm for training multi-layer perceptron (MLP). The performance of the HHO-based MLP trainer was tested by employing five standard data sets (XOR, Balloon, Iris, Breast Cancer and Heart). The results were compared with those obtained with the sine cosine algorithm (SCA). Comparative statistical results showed that using HHO algorithm as a trainer is more effective and has a higher rate of classification ability. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.doi 10.1109/hora49412.2020.9152874
dc.identifier.endpage 283 en_US
dc.identifier.isbn 9781728193526
dc.identifier.scopus 2-s2.0-85089698640
dc.identifier.scopusquality N/A
dc.identifier.startpage 279 en_US
dc.identifier.uri https://doi.org/10.1109/hora49412.2020.9152874
dc.identifier.uri https://hdl.handle.net/20.500.14720/13756
dc.identifier.wos WOS:000644404300049
dc.identifier.wosquality N/A
dc.language.iso tr en_US
dc.publisher Ieee en_US
dc.relation.ispartof 2nd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) -- JUN 26-27, 2020 -- TURKEY en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Multi-Layer Perceptron (Mlp) en_US
dc.subject Harris Hawks Optimization (Hho) en_US
dc.subject Sine Cosine Algorithm (Sca) en_US
dc.title Training Multi-Layer Perceptron Using Harris Hawks Optimization en_US
dc.type Conference Object en_US

Files