Chebyshev Delta Shaped and Chebyshev Pseudo-Spectral Methods for Solutions of Differential Equations

dc.authorscopusid 6701370438
dc.authorscopusid 7005653243
dc.authorscopusid 6603328862
dc.authorscopusid 24559923600
dc.authorwosid Tunç, Cemil/Afh-0945-2022
dc.contributor.author Akyildiz, Fahir Talay
dc.contributor.author Vajravelu, Kuppalapalle
dc.contributor.author Tunc, Cemil
dc.contributor.author Abraham, John
dc.date.accessioned 2025-05-10T16:56:04Z
dc.date.available 2025-05-10T16:56:04Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Akyildiz, Fahir Talay] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Fac Sci, Dept Math & Stat, Riyadh 11564, Saudi Arabia; [Vajravelu, Kuppalapalle] Univ Cent Florida, Dept Math, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA; [Tunc, Cemil] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Campus, TR-65080 Van, Turkiye; [Abraham, John] Univ St Thomas, Sch Engn, 2115 Summit Ave, St Paul, MN 55105 USA en_US
dc.description.abstract In this paper we introduce a new Chebyshev delta-shaped function (CDSF) and establish its relationship with Chebyshev polynomials in interpolation problems. We first prove that CDSF is indeed form a basis for a Haar space. We then derive the conditions for the selection of suitable collocation points. Next, we introduce and develop Chebyshev delta-shaped pseudo-spectral method. Error bounds on discrete L2-norm and Sobolev norm (Hp) are presented for the Chebyshev pseudo-spectral method. Tests to find approximate solutions for the Poisson, Poisson-Boltzmann equations and Stokes second problem and comparisons of the predictions using the following methods are presented: 1. Chebyshev pseudo-spectral method, 2. Cosine-sine delta-shaped pseudo-spectral method, and 3. Cosine-sine pseudo-spectral method. Excellent convergent and stable results are obtained by using our newly defined Chebyshev delta-shaped basis functions and this is documented for the first time. en_US
dc.description.sponsorship Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) [IMSIU-DDRSP2503] en_US
dc.description.sponsorship This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2503) . en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.matcom.2025.03.034
dc.identifier.endpage 69 en_US
dc.identifier.issn 0378-4754
dc.identifier.issn 1872-7166
dc.identifier.scopus 2-s2.0-105002249426
dc.identifier.scopusquality Q1
dc.identifier.startpage 52 en_US
dc.identifier.uri https://doi.org/10.1016/j.matcom.2025.03.034
dc.identifier.volume 236 en_US
dc.identifier.wos WOS:001482167100001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Chebyshev Pseudo-Spectral Method (Collocation Method) en_US
dc.subject Chebyshev Delta-Shaped Functions en_US
dc.subject Chebyshev-Delta Shaped Pseudo-Spectral Method en_US
dc.subject Non-Singular Matrix en_US
dc.subject Poisson-Boltzmann Equations (Free Energy Of Highly Charged Molecules) en_US
dc.subject Non-Smooth Boundary Condition en_US
dc.title Chebyshev Delta Shaped and Chebyshev Pseudo-Spectral Methods for Solutions of Differential Equations en_US
dc.type Article en_US
dspace.entity.type Publication

Files