Chebyshev Delta Shaped and Chebyshev Pseudo-Spectral Methods for Solutions of Differential Equations
| dc.authorscopusid | 6701370438 | |
| dc.authorscopusid | 7005653243 | |
| dc.authorscopusid | 6603328862 | |
| dc.authorscopusid | 24559923600 | |
| dc.authorwosid | Tunç, Cemil/Afh-0945-2022 | |
| dc.contributor.author | Akyildiz, Fahir Talay | |
| dc.contributor.author | Vajravelu, Kuppalapalle | |
| dc.contributor.author | Tunc, Cemil | |
| dc.contributor.author | Abraham, John | |
| dc.date.accessioned | 2025-05-10T16:56:04Z | |
| dc.date.available | 2025-05-10T16:56:04Z | |
| dc.date.issued | 2025 | |
| dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
| dc.department-temp | [Akyildiz, Fahir Talay] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Fac Sci, Dept Math & Stat, Riyadh 11564, Saudi Arabia; [Vajravelu, Kuppalapalle] Univ Cent Florida, Dept Math, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA; [Tunc, Cemil] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Campus, TR-65080 Van, Turkiye; [Abraham, John] Univ St Thomas, Sch Engn, 2115 Summit Ave, St Paul, MN 55105 USA | en_US |
| dc.description.abstract | In this paper we introduce a new Chebyshev delta-shaped function (CDSF) and establish its relationship with Chebyshev polynomials in interpolation problems. We first prove that CDSF is indeed form a basis for a Haar space. We then derive the conditions for the selection of suitable collocation points. Next, we introduce and develop Chebyshev delta-shaped pseudo-spectral method. Error bounds on discrete L2-norm and Sobolev norm (Hp) are presented for the Chebyshev pseudo-spectral method. Tests to find approximate solutions for the Poisson, Poisson-Boltzmann equations and Stokes second problem and comparisons of the predictions using the following methods are presented: 1. Chebyshev pseudo-spectral method, 2. Cosine-sine delta-shaped pseudo-spectral method, and 3. Cosine-sine pseudo-spectral method. Excellent convergent and stable results are obtained by using our newly defined Chebyshev delta-shaped basis functions and this is documented for the first time. | en_US |
| dc.description.sponsorship | Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) [IMSIU-DDRSP2503] | en_US |
| dc.description.sponsorship | This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2503) . | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1016/j.matcom.2025.03.034 | |
| dc.identifier.endpage | 69 | en_US |
| dc.identifier.issn | 0378-4754 | |
| dc.identifier.issn | 1872-7166 | |
| dc.identifier.scopus | 2-s2.0-105002249426 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.startpage | 52 | en_US |
| dc.identifier.uri | https://doi.org/10.1016/j.matcom.2025.03.034 | |
| dc.identifier.volume | 236 | en_US |
| dc.identifier.wos | WOS:001482167100001 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Chebyshev Pseudo-Spectral Method (Collocation Method) | en_US |
| dc.subject | Chebyshev Delta-Shaped Functions | en_US |
| dc.subject | Chebyshev-Delta Shaped Pseudo-Spectral Method | en_US |
| dc.subject | Non-Singular Matrix | en_US |
| dc.subject | Poisson-Boltzmann Equations (Free Energy Of Highly Charged Molecules) | en_US |
| dc.subject | Non-Smooth Boundary Condition | en_US |
| dc.title | Chebyshev Delta Shaped and Chebyshev Pseudo-Spectral Methods for Solutions of Differential Equations | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |