Open-Circuit Fault Detection in T-Type MLI Using XGBoost: A Machine Learning-Based Approach

dc.authorwosid Hatas, Hasan/Hhz-2397-2022
dc.authorwosid Pacal, Ishak/Hjj-1662-2023
dc.authorwosid Karakılıç, Murat/Gya-4058-2022
dc.contributor.author Karakilic, Murat
dc.contributor.author Hatas, Hasan
dc.contributor.author Pacal, Ishak
dc.date.accessioned 2025-06-30T15:25:51Z
dc.date.available 2025-06-30T15:25:51Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Karakilic, Murat; Pacal, Ishak] Igdir Univ, Fac Engn, Comp Engn Dept, Igdir, Turkiye; [Hatas, Hasan] Van Yuzuncu Yil Univ, Fac Engn, Elect Elect Engn Dept, Van, Turkiye en_US
dc.description.abstract Prediction of open circuit (OC) faults in a T-Type multilevel inverter (MLI) with high accuracy using machine learning (ML) models is a critical issue for the reliability of power electronic systems. In this study, OC faults that may occur in any of the nine switches in the inverter circuit are detected and classified using a data-driven approach. K-Nearest Neighbors (KNN) and XGBoost algorithms are applied for machine learning based fault detection and their performances are compared. The data set for fault detection is obtained from randomly generated OC faults in the T-Type MLI circuit modeled in MATLAB/Simulink environment. For each fault class, 255 signal samples are obtained for two cycles (4 ms) at a sampling frequency of 5 kHz and used as input data to the ML models. The XGBoost model shows the best performance with an accuracy of 98.37%. This shows that it provides fast and reliable fault detection in large data sets. The confusion matrix, accuracy and loss plots are used to analyze the performance of the model and the study demonstrates the applicability of ML-based fault detection in inverter systems. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.doi 10.1109/ICHORA65333.2025.11017205
dc.identifier.isbn 9798331510893
dc.identifier.isbn 9798331510886
dc.identifier.issn 2996-4385
dc.identifier.scopus 2-s2.0-105008423654
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1109/ICHORA65333.2025.11017205
dc.identifier.wos WOS:001533792800187
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 7th International Congress on Human-Computer Interaction, Optimization and Robotic Applications-ICHORA -- MAY 23-24, 2025 -- Ankara, TURKIYE en_US
dc.relation.ispartofseries International Congress on Human-Computer Interaction Optimization and Robotic Applications
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fault Detection en_US
dc.subject K-NN en_US
dc.subject Machine Learning (ML) en_US
dc.subject Open-Circuit (OC) en_US
dc.subject T-Type Inverters en_US
dc.subject XGBoost en_US
dc.title Open-Circuit Fault Detection in T-Type MLI Using XGBoost: A Machine Learning-Based Approach en_US
dc.type Conference Object en_US
dspace.entity.type Publication

Files