Fixed Point Theorems in B-Metric Spaces and Their Applications To Non-Linear Fractional Differential and Integral Equations

dc.authorid Tunc, Cemil/0000-0003-2909-8753
dc.authorid Sarwar, Muhammad/0000-0003-3904-8442
dc.authorscopusid 56979223500
dc.authorscopusid 37003064000
dc.authorscopusid 6603328862
dc.authorwosid Sarwar, Muhammad/S-8896-2016
dc.authorwosid Tunç, Cemil/Afh-0945-2022
dc.contributor.author Zada, Mian Bahadur
dc.contributor.author Sarwar, Muhammad
dc.contributor.author Tunc, Cemil
dc.date.accessioned 2025-05-10T17:04:51Z
dc.date.available 2025-05-10T17:04:51Z
dc.date.issued 2018
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Zada, Mian Bahadur; Sarwar, Muhammad] Univ Malakand, Dept Math, Chakdara Dir L, Pakistan; [Tunc, Cemil] Yuzuncu Yil Univ, Dept Math, Fac Sci, Van, Turkey en_US
dc.description Tunc, Cemil/0000-0003-2909-8753; Sarwar, Muhammad/0000-0003-3904-8442 en_US
dc.description.abstract In this paper, we modify L-cyclic (alpha, beta)(s)-contractions and using this contraction, we prove fixed point theorems in the setting of b-metric spaces. As an application, we discuss the existence of a unique solution to non-linear fractional differential equation, D-c(sigma) (x(t)) = f(t, x(t)), for all t is an element of (0, 1), (1) with the integral boundary conditions, x(0) = 0, x(1) = integral(rho)(0) x(r) dr, for all rho is an element of (0, 1), where x is an element of C([0, 1], R), D-c(alpha) denotes the Caputo fractional derivative of order sigma is an element of (1, 2], f : [0, 1] x R -> R is a continuous function. Furthermore, we established existence result of a unique common solution to the system of non-linear quadratic integral equations, {x(t) = integral(1)(0) H(t, tau)f(1)(tau, x(tau))d tau, for all t is an element of [0, 1]; x(t) = integral(1)(0) H(t, tau)f(2)(tau, x(tau))d tau, for all t is an element of [0, 1], where H : [0, 1] x [0, 1] -> [0, infinity) is continuous at t is an element of [0, 1] for every tau is an element of [0, 1] and measurable at tau is an element of [0, 1] for every t is an element of [0, 1] and f(1), f(2) : [0, 1] x R -> [0, infinity) are continuous functions. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s11784-018-0510-0
dc.identifier.issn 1661-7738
dc.identifier.issn 1661-7746
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85041519947
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s11784-018-0510-0
dc.identifier.uri https://hdl.handle.net/20.500.14720/6125
dc.identifier.volume 20 en_US
dc.identifier.wos WOS:000427656300031
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer Basel Ag en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject B-Metric Spaces en_US
dc.subject Common Fixed Points en_US
dc.subject Weakly Compatible Maps en_US
dc.subject Admissible Mapping en_US
dc.subject Non-Linear Quadratic Integral Equations en_US
dc.subject Non-Linear Fractional Differential Equation en_US
dc.title Fixed Point Theorems in B-Metric Spaces and Their Applications To Non-Linear Fractional Differential and Integral Equations en_US
dc.type Article en_US
dspace.entity.type Publication

Files