Fixed Point Theorems in B-Metric Spaces and Their Applications To Non-Linear Fractional Differential and Integral Equations
| dc.authorid | Tunc, Cemil/0000-0003-2909-8753 | |
| dc.authorid | Sarwar, Muhammad/0000-0003-3904-8442 | |
| dc.authorscopusid | 56979223500 | |
| dc.authorscopusid | 37003064000 | |
| dc.authorscopusid | 6603328862 | |
| dc.authorwosid | Sarwar, Muhammad/S-8896-2016 | |
| dc.authorwosid | Tunç, Cemil/Afh-0945-2022 | |
| dc.contributor.author | Zada, Mian Bahadur | |
| dc.contributor.author | Sarwar, Muhammad | |
| dc.contributor.author | Tunc, Cemil | |
| dc.date.accessioned | 2025-05-10T17:04:51Z | |
| dc.date.available | 2025-05-10T17:04:51Z | |
| dc.date.issued | 2018 | |
| dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
| dc.department-temp | [Zada, Mian Bahadur; Sarwar, Muhammad] Univ Malakand, Dept Math, Chakdara Dir L, Pakistan; [Tunc, Cemil] Yuzuncu Yil Univ, Dept Math, Fac Sci, Van, Turkey | en_US |
| dc.description | Tunc, Cemil/0000-0003-2909-8753; Sarwar, Muhammad/0000-0003-3904-8442 | en_US |
| dc.description.abstract | In this paper, we modify L-cyclic (alpha, beta)(s)-contractions and using this contraction, we prove fixed point theorems in the setting of b-metric spaces. As an application, we discuss the existence of a unique solution to non-linear fractional differential equation, D-c(sigma) (x(t)) = f(t, x(t)), for all t is an element of (0, 1), (1) with the integral boundary conditions, x(0) = 0, x(1) = integral(rho)(0) x(r) dr, for all rho is an element of (0, 1), where x is an element of C([0, 1], R), D-c(alpha) denotes the Caputo fractional derivative of order sigma is an element of (1, 2], f : [0, 1] x R -> R is a continuous function. Furthermore, we established existence result of a unique common solution to the system of non-linear quadratic integral equations, {x(t) = integral(1)(0) H(t, tau)f(1)(tau, x(tau))d tau, for all t is an element of [0, 1]; x(t) = integral(1)(0) H(t, tau)f(2)(tau, x(tau))d tau, for all t is an element of [0, 1], where H : [0, 1] x [0, 1] -> [0, infinity) is continuous at t is an element of [0, 1] for every tau is an element of [0, 1] and measurable at tau is an element of [0, 1] for every t is an element of [0, 1] and f(1), f(2) : [0, 1] x R -> [0, infinity) are continuous functions. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1007/s11784-018-0510-0 | |
| dc.identifier.issn | 1661-7738 | |
| dc.identifier.issn | 1661-7746 | |
| dc.identifier.issue | 1 | en_US |
| dc.identifier.scopus | 2-s2.0-85041519947 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.uri | https://doi.org/10.1007/s11784-018-0510-0 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14720/6125 | |
| dc.identifier.volume | 20 | en_US |
| dc.identifier.wos | WOS:000427656300031 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Basel Ag | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | B-Metric Spaces | en_US |
| dc.subject | Common Fixed Points | en_US |
| dc.subject | Weakly Compatible Maps | en_US |
| dc.subject | Admissible Mapping | en_US |
| dc.subject | Non-Linear Quadratic Integral Equations | en_US |
| dc.subject | Non-Linear Fractional Differential Equation | en_US |
| dc.title | Fixed Point Theorems in B-Metric Spaces and Their Applications To Non-Linear Fractional Differential and Integral Equations | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |