The Banach Algebra Generated by a C0-Semigroup

dc.authorscopusid 15063141800
dc.contributor.author Mustafayev, H
dc.date.accessioned 2025-05-10T17:29:05Z
dc.date.available 2025-05-10T17:29:05Z
dc.date.issued 2006
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Yuzuncu Yil Univ, Fac Arts & Sci, Dept Math, TR-65080 Van, Turkey en_US
dc.description.abstract Let T = {T(t)}(t >= 0) be a bounded Co-semigroup on a Banach space with generator A. We define A(T) as the closure with respect to the operator-norm topology of the set {f(T): f epsilon L-1(R+)}, where f (T) = integral(infinity)(0) f(t)T(t) dt is the Laplace transform of f epsilon L-1 (R+) with respect to the semigroup T. Then A(T) is a commutative Banach algebra. It is shown that if the unitary spectrurn sigma(A)boolean AND iR of A is at most countable, then the Gelfand transform of S epsilon A(T) vanishes on sigma(A)boolean AND iR if and only if, lim(t ->infinity) parallel to T(t)S parallel to = 0. Some applications to the semisimplicity problem are given. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.crma.2006.02.017
dc.identifier.endpage 578 en_US
dc.identifier.issn 1631-073X
dc.identifier.issue 8 en_US
dc.identifier.scopus 2-s2.0-33645317047
dc.identifier.scopusquality Q3
dc.identifier.startpage 575 en_US
dc.identifier.uri https://doi.org/10.1016/j.crma.2006.02.017
dc.identifier.uri https://hdl.handle.net/20.500.14720/12226
dc.identifier.volume 342 en_US
dc.identifier.wos WOS:000236843800008
dc.identifier.wosquality Q3
dc.institutionauthor Mustafayev, H
dc.language.iso en en_US
dc.publisher Elsevier France-editions Scientifiques Medicales Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title The Banach Algebra Generated by a C0-Semigroup en_US
dc.type Article en_US
dspace.entity.type Publication

Files