On the Stability and Uniform Stability of Retarded Integro-Differential Equations

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science inc

Abstract

In this paper, the authors obtain new sufficient conditions for stability (S) and uniform stability (US) of solutions of the first order retarded Volterra integro-differential equations (VIDEs) in the form x' = A(t)x + integral(t)(t-tau) C(t, s)phi(s, x(s))ds + f(t, x, x(t - tau)). The analysis of the obtained (S) and (US) results mainly depend on the definition of an appropriate Lyapunov functional (LF). An example is provided to illustrate the effectiveness of the proposed results. MATLAB-Simulink is applied to show the behaviors of the paths of solutions of the considered (VIDEs) for a particular case. (C) 2018 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Description

Tunc, Cemil/0000-0003-2909-8753

Keywords

Non-Linear, (Vide), First Order, Stability, Uniformly Stability, Lyapunov Functional

Turkish CoHE Thesis Center URL

WoS Q

Q1

Scopus Q

Q1

Source

Volume

57

Issue

4

Start Page

3501

End Page

3507