On the Oscillation of a Class of Damped Fractional Differential Equations

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Univ Miskolc inst Math

Abstract

Using Riccati type transformations, the authors establish some new oscillation criteria for the fractional differential equation (D-0+(1+alpha) y) (t) + p(t) (D-0+(alpha) y) (t) + q(t) f(G(t)) = 0, t > 0, where D-0+(alpha) is the Riemann-Liouville fractional derivative of order alpha of y, G(t) = integral(t)(0) (t - s)(-alpha) y(s)ds, and alpha is an element of(0, 1). Examples are provided to illustrate the relevance of the results.

Description

Tunc, Ercan/0000-0001-8860-608X; Tunc, Osman/0000-0003-2965-4561

Keywords

Oscillatory Solutions, Fractional Differential Equation, Integral Averaging Technique, Riccati Transformation

Turkish CoHE Thesis Center URL

WoS Q

Q2

Scopus Q

Q3

Source

Volume

17

Issue

1

Start Page

647

End Page

656
Google Scholar Logo
Google Scholar™