On the Oscillation of a Class of Damped Fractional Differential Equations
No Thumbnail Available
Date
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Univ Miskolc inst Math
Abstract
Using Riccati type transformations, the authors establish some new oscillation criteria for the fractional differential equation (D-0+(1+alpha) y) (t) + p(t) (D-0+(alpha) y) (t) + q(t) f(G(t)) = 0, t > 0, where D-0+(alpha) is the Riemann-Liouville fractional derivative of order alpha of y, G(t) = integral(t)(0) (t - s)(-alpha) y(s)ds, and alpha is an element of(0, 1). Examples are provided to illustrate the relevance of the results.
Description
Tunc, Ercan/0000-0001-8860-608X; Tunc, Osman/0000-0003-2965-4561
Keywords
Oscillatory Solutions, Fractional Differential Equation, Integral Averaging Technique, Riccati Transformation
Turkish CoHE Thesis Center URL
WoS Q
Q2
Scopus Q
Q3
Source
Volume
17
Issue
1
Start Page
647
End Page
656