Use of Principal Component Scores in Multiple Linear Regression Models for Prediction of Chlorophyll-A in Reservoirs

dc.authorid Demir, Nilsun/0000-0002-3895-7655
dc.authorid Ankarali, Handan/0000-0002-3613-0523
dc.authorscopusid 23134564000
dc.authorscopusid 7006874012
dc.authorscopusid 19735005100
dc.authorscopusid 6504136768
dc.authorwosid Kanik, Emine Arzu/G-7929-2015
dc.authorwosid Demir, Nilsun/H-7762-2012
dc.authorwosid Ankarali, Handan/P-1058-2016
dc.contributor.author Çamdevyren, H
dc.contributor.author Demyr, N
dc.contributor.author Kanik, A
dc.contributor.author Keskyn, S
dc.date.accessioned 2025-05-10T17:45:11Z
dc.date.available 2025-05-10T17:45:11Z
dc.date.issued 2005
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Mersin Univ, Typ Fak, Biyoistat AD, Mersin, Turkey; Ankara Univ, Fac Agr, Dept Fisheries, TR-06100 Ankara, Turkey; Univ 100 Yyl, Fac Agr, Dept Biometry, Van, Turkey en_US
dc.description Demir, Nilsun/0000-0002-3895-7655; Ankarali, Handan/0000-0002-3613-0523 en_US
dc.description.abstract Chlorophyll-a is a well-accepted index for phytoplankton abundance and population of primary producers in an aquatic environment. The relationships between Chlorophyll-a and 16 chemical, physical and biological water quality variables in amlidere reservoir (Ankara, Turkey) were studied by using principal component scores (PCS) in multiple linear regression analysis (MLR) to predict Chlorophyll-a levels. Principal component analysis was used to simplify the complexity of relations between water quality variables. Score values obtained by PC scores were used as independent variables in the multiple linear regression models. Two approaches were used in the present statistical analysis. In the first approach, only five selected score values obtained by PC analysis were used for the prediction of Chlorophyll-a levels and predictive success (R-2) of the model found as 56.3%. In the second approach, where all score values obtained from the PC analysis were used as independent variables, predictive power was turned out to be 90.8%. Both approaches could be used to predict Chlorophyll-a levels in reservoirs successfully. (C) 2004 Elsevier B.V. All rights reserved. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.ecolmodel.2004.06.043
dc.identifier.endpage 589 en_US
dc.identifier.issn 0304-3800
dc.identifier.issn 1872-7026
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-8844227567
dc.identifier.scopusquality Q2
dc.identifier.startpage 581 en_US
dc.identifier.uri https://doi.org/10.1016/j.ecolmodel.2004.06.043
dc.identifier.uri https://hdl.handle.net/20.500.14720/16276
dc.identifier.volume 181 en_US
dc.identifier.wos WOS:000227489500010
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Chlorophyll-A en_US
dc.subject Multiple Linear Regression Analysis en_US
dc.subject Principal Component Analysis en_US
dc.subject Reservoirs en_US
dc.subject Water Quality en_US
dc.title Use of Principal Component Scores in Multiple Linear Regression Models for Prediction of Chlorophyll-A in Reservoirs en_US
dc.type Article en_US
dspace.entity.type Publication

Files