Mean Square Stability of Numerical Method for Stochastic Volterra Integral Equations With Double Weakly Singular Kernels

dc.authorscopusid 57205095174
dc.authorscopusid 8927932100
dc.authorscopusid 16309407500
dc.contributor.author Rouz, O.F.
dc.contributor.author Shahmorad, S.
dc.contributor.author Erdogan, F.
dc.date.accessioned 2025-09-03T16:38:41Z
dc.date.available 2025-09-03T16:38:41Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Rouz O.F.] Faculty of Mathematics, Statistics and Computer Sciences, University of Tabriz, Tabriz, Iran; [Shahmorad S.] Faculty of Mathematics, Statistics and Computer Sciences, University of Tabriz, Tabriz, Iran; [Erdogan F.] Department of Mathematics, Van Yuzuncu Yil University, Van, Turkey en_US
dc.description.abstract The main goal of this paper is to develop an improved stochastic θ-scheme as a numerical method for stochastic Volterra integral equations (SVIEs) with double weakly singular kernels and demonstrate that the stability of the proposed scheme is affected by the kernel pa-rameters. To overcome the low computational efficiency of the stochastic θ-scheme, we employed the sum-of-exponentials (SOE) approximation. Then, the mean square stability of the proposed scheme with respect to a convolution test equation is studied. Additionally, based on the stability conditions and the explicit structure of the stability matrices, analytical and numerical stability regions are plotted and compared with the split-step θ-method and the θ-Milstein method. The results confirm that our approach aligns significantly with the expected physical interpretations. © 2025 Institute for Scientific Computing and Information. en_US
dc.identifier.doi 10.4208/ijnam2025-1033
dc.identifier.endpage 776 en_US
dc.identifier.issn 1705-5105
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-105012887456
dc.identifier.scopusquality Q3
dc.identifier.startpage 755 en_US
dc.identifier.uri https://doi.org/10.4208/ijnam2025-1033
dc.identifier.uri https://hdl.handle.net/20.500.14720/28353
dc.identifier.volume 22 en_US
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher University of Alberta en_US
dc.relation.ispartof International Journal of Numerical Analysis and Modeling en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Mean Square Stability en_US
dc.subject SOE Approximation en_US
dc.subject Stochastic Volterra Integral Equations en_US
dc.subject Stochastic Θ-Scheme en_US
dc.subject Weakly Singular Kernels en_US
dc.title Mean Square Stability of Numerical Method for Stochastic Volterra Integral Equations With Double Weakly Singular Kernels en_US
dc.type Article en_US
dspace.entity.type Publication

Files