Using Different Machine-Learning Algorithms to Predict Dissolved Oxygen Concentration in Rainbow Trout Farms

dc.authorid Karatas, Boran/0000-0003-4353-1293
dc.contributor.author Karatas, Boran
dc.contributor.author Cakmakci, Cihan
dc.contributor.author Yucel, Elif Sena
dc.contributor.author Demir, Muhammet
dc.contributor.author Sen, Fazil
dc.date.accessioned 2025-07-30T16:33:31Z
dc.date.available 2025-07-30T16:33:31Z
dc.date.issued 2026
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Karatas, Boran] Van Yuzuncu Yil Univ, Fac Fisheries, Dept Aquaculture, Van, Turkiye; [Cakmakci, Cihan] Van Yuzuncu Yil Univ, Fac Agr, Dept Agr Biotechnol, Anim Biotechnol Sect, Van, Turkiye; [Yucel, Elif Sena] Van Yuzuncu Yil Univ, Inst Sci, Van, Turkiye; [Demir, Muhammet] Van Prov Directorate Agr & Forestry, Fisheries & Aquaculture Branch Directorate, Van, Turkiye; [Sen, Fazil] Van Yuzuncu Yil Univ, Fac Fisheries, Dept Basic Sci, Van, Turkiye en_US
dc.description Karatas, Boran/0000-0003-4353-1293 en_US
dc.description.abstract Dissolved oxygen (DO) is a vital parameter in intensive rainbow trout aquaculture, directly influencingfish growth, health, and survival. As such, accurate monitoring and prediction of DO levels are crucial for ensuring sustainable and efficient aquaculture practices. This study assessed and compared the predictive performance of four machine learning algorithms Multivariate Adaptive Regression Splines (MARS), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Averaged Neural Networks (avNNet) in estimating DO concentrations based on a range of water quality parameters. A total of 120 samples were collected from 12 rainbow trout farms across T & uuml;rkiye. The input variables included suspended solids, electrical conductivity, turbidity, nitrate, nitrite, ammonia, ammonium, orthophosphate, pH, water temperature, and total phosphorus. DO levels ranged between 8 and 15 mg/L. Model performance was evaluated using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percent Error (MAPE), and the coefficient of determination (R2). All models demonstrated strong predictive accuracy, with XGBoost achieving the best overall performance (MAE: 0.44, RMSE: 0.58, MAPE: 0.04, R2: 0.78), followed by RF, avNNet, and MARS. These findings highlight XGBoost as a robust predictor of dissolved oxygen levels in aquaculture systems, which may contribute to improving water quality management and increasing productivity in rainbow trout aquaculture. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.4194/TRJFAS27622
dc.identifier.issn 1303-2712
dc.identifier.issn 2149-181X
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-105010730867
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.4194/TRJFAS27622
dc.identifier.volume 26 en_US
dc.identifier.wos WOS:001565811700001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Central Fisheries Research Inst en_US
dc.relation.ispartof Turkish Journal of Fisheries and Aquatic Sciences en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Aquaculture en_US
dc.subject Machine Learning en_US
dc.subject Rainbow Trout en_US
dc.subject Water Quality en_US
dc.title Using Different Machine-Learning Algorithms to Predict Dissolved Oxygen Concentration in Rainbow Trout Farms en_US
dc.type Article en_US
dspace.entity.type Publication

Files