Enhanced Classification in IF-ARCA and IF-KNN with Fuzzy Metrics and Cosine Similarity Through Dual Stage Optimization Using Harris Hawks Algorithm

dc.authorscopusid 57210605351
dc.authorscopusid 60109637900
dc.authorscopusid 7007101709
dc.authorwosid Castillo, Oscar/I-5578-2019
dc.authorwosid Kutlu, Fatih/P-8476-2016
dc.contributor.author Kutlu, Fatih
dc.contributor.author Goleli, Kubra
dc.contributor.author Castillo, Oscar
dc.date.accessioned 2025-10-30T15:27:02Z
dc.date.available 2025-10-30T15:27:02Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Kutlu, Fatih] Van Yuzuncu Yil Univ, Dept Artificial Intelligence & Robot, Van, Turkiye; [Goleli, Kubra] Van Yuzuncu Yil Univ, Dept Math, Van, Turkiye; [Castillo, Oscar] Tijuana Inst Technol, Div Grad Studies & Res, Tijuana, Mexico en_US
dc.description.abstract This study proposes a dual-stage optimization framework for uncertainty-aware classification by integrating the Intuition-istic Fuzzy Any Relation Clustering Algorithm (IF-ARCA) with Intuitionistic Fuzzy K-Nearest Neighbors (IF-KNN). In the first stage, Harris Hawks Optimization (HHO) calibrates IF-ARCA parameters to construct reliable membership and non-membership matrices, while in the second stage HHO independently tunes IF-KNN parameters, ensuring decoupled and stable convergence. HHO was chosen for its effective exploration-exploitation balance in high-dimensional search spaces, and the dual-stage design uniquely enables clustering and classification to be optimized without mutual interfer-ence. Extensive experiments on eight benchmark datasets (seven from UCI, plus Yeast and Credit Fraud for scalability) confirm the superiority of the proposed approach: the fuzzy metric variant achieved F1 = 0.993 on Credit Fraud and 0.946 on MONK's Problems, while cosine similarity reached 0.989 on Digits. Compared with established FKNN variants, the framework yielded 20-35% relative improvements and demonstrated statistically significant gains on challenging datas-ets (Iris, MONK's, Yeast; Wilcoxon p < 0.05). These results highlight the framework's robustness under class overlap and imbalance, while maintaining competitive performance in high-dimensional domains, establishing a novel contribution to clustering-guided classification and nature-inspired optimization. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s11760-025-04784-3
dc.identifier.issn 1863-1703
dc.identifier.issn 1863-1711
dc.identifier.issue 13 en_US
dc.identifier.scopus 2-s2.0-105016729550
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s11760-025-04784-3
dc.identifier.uri https://hdl.handle.net/20.500.14720/28785
dc.identifier.volume 19 en_US
dc.identifier.wos WOS:001576018300009
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.ispartof Signal Image and Video Processing en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Intuitionistic Fuzzy Sets en_US
dc.subject Harris Hawks Optimization en_US
dc.subject Hybrid Classification en_US
dc.subject Fuzzy Metric Similarity en_US
dc.subject Machine Learning Optimization en_US
dc.title Enhanced Classification in IF-ARCA and IF-KNN with Fuzzy Metrics and Cosine Similarity Through Dual Stage Optimization Using Harris Hawks Algorithm en_US
dc.type Article en_US
dspace.entity.type Publication

Files