Enhanced Classification in IF-ARCA and IF-KNN with Fuzzy Metrics and Cosine Similarity Through Dual Stage Optimization Using Harris Hawks Algorithm
| dc.authorscopusid | 57210605351 | |
| dc.authorscopusid | 60109637900 | |
| dc.authorscopusid | 7007101709 | |
| dc.authorwosid | Castillo, Oscar/I-5578-2019 | |
| dc.authorwosid | Kutlu, Fatih/P-8476-2016 | |
| dc.contributor.author | Kutlu, Fatih | |
| dc.contributor.author | Goleli, Kubra | |
| dc.contributor.author | Castillo, Oscar | |
| dc.date.accessioned | 2025-10-30T15:27:02Z | |
| dc.date.available | 2025-10-30T15:27:02Z | |
| dc.date.issued | 2025 | |
| dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
| dc.department-temp | [Kutlu, Fatih] Van Yuzuncu Yil Univ, Dept Artificial Intelligence & Robot, Van, Turkiye; [Goleli, Kubra] Van Yuzuncu Yil Univ, Dept Math, Van, Turkiye; [Castillo, Oscar] Tijuana Inst Technol, Div Grad Studies & Res, Tijuana, Mexico | en_US |
| dc.description.abstract | This study proposes a dual-stage optimization framework for uncertainty-aware classification by integrating the Intuition-istic Fuzzy Any Relation Clustering Algorithm (IF-ARCA) with Intuitionistic Fuzzy K-Nearest Neighbors (IF-KNN). In the first stage, Harris Hawks Optimization (HHO) calibrates IF-ARCA parameters to construct reliable membership and non-membership matrices, while in the second stage HHO independently tunes IF-KNN parameters, ensuring decoupled and stable convergence. HHO was chosen for its effective exploration-exploitation balance in high-dimensional search spaces, and the dual-stage design uniquely enables clustering and classification to be optimized without mutual interfer-ence. Extensive experiments on eight benchmark datasets (seven from UCI, plus Yeast and Credit Fraud for scalability) confirm the superiority of the proposed approach: the fuzzy metric variant achieved F1 = 0.993 on Credit Fraud and 0.946 on MONK's Problems, while cosine similarity reached 0.989 on Digits. Compared with established FKNN variants, the framework yielded 20-35% relative improvements and demonstrated statistically significant gains on challenging datas-ets (Iris, MONK's, Yeast; Wilcoxon p < 0.05). These results highlight the framework's robustness under class overlap and imbalance, while maintaining competitive performance in high-dimensional domains, establishing a novel contribution to clustering-guided classification and nature-inspired optimization. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1007/s11760-025-04784-3 | |
| dc.identifier.issn | 1863-1703 | |
| dc.identifier.issn | 1863-1711 | |
| dc.identifier.issue | 13 | en_US |
| dc.identifier.scopus | 2-s2.0-105016729550 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.uri | https://doi.org/10.1007/s11760-025-04784-3 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14720/28785 | |
| dc.identifier.volume | 19 | en_US |
| dc.identifier.wos | WOS:001576018300009 | |
| dc.identifier.wosquality | Q3 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer London Ltd | en_US |
| dc.relation.ispartof | Signal Image and Video Processing | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Intuitionistic Fuzzy Sets | en_US |
| dc.subject | Harris Hawks Optimization | en_US |
| dc.subject | Hybrid Classification | en_US |
| dc.subject | Fuzzy Metric Similarity | en_US |
| dc.subject | Machine Learning Optimization | en_US |
| dc.title | Enhanced Classification in IF-ARCA and IF-KNN with Fuzzy Metrics and Cosine Similarity Through Dual Stage Optimization Using Harris Hawks Algorithm | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |