A Hybrid Genetic Algorithm for the Discrete Time-Cost Trade-Off Problem
No Thumbnail Available
Date
2012
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pergamon-elsevier Science Ltd
Abstract
In this paper we present a hybrid strategy developed using genetic algorithms (GAs), simulated annealing (SA), and quantum simulated annealing techniques (QSA) for the discrete time-cost trade-off problem (DTCTP). In the hybrid algorithm (HA), SA is used to improve hill-climbing ability of GA. In addition to SA, the hybrid strategy includes QSA to achieve enhanced local search capability. The HA and a sole GA have been coded in Visual C++ on a personal computer. Ten benchmark test problems with a range of 18 to 630 activities are used to evaluate performance of the HA. The benchmark problems are solved to optimality using mixed integer programming technique. The results of the performance analysis indicate that the hybrid strategy improves convergence of GA significantly and HA provides a powerful alternative for the DTCTP. (c) 2012 Elsevier Ltd. All rights reserved.
Description
Sonmez, Rifat/0000-0001-6163-3264
ORCID
Keywords
Project Management, Genetic Algorithms, Optimization, Discrete Time-Cost Trade-Off Problem
Turkish CoHE Thesis Center URL
WoS Q
Q1
Scopus Q
Q1
Source
Volume
39
Issue
13
Start Page
11428
End Page
11434