On Generalized Local Fractal Calculus Associate With Gauge Integral and Applications

dc.authorscopusid 57217859518
dc.authorscopusid 59720214100
dc.authorscopusid 24485325700
dc.contributor.author Kalita, Hemanta
dc.contributor.author Golmankhane, Aireza K.
dc.contributor.author Hazarika, Bipan
dc.date.accessioned 2025-05-10T16:56:06Z
dc.date.available 2025-05-10T16:56:06Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Kalita, Hemanta] VIT Bhopal Univ, Sch Adv Sci & Languages, Math Div, Indore Highway, Bhopal, Madhya Pradesh, India; [Golmankhane, Aireza K.] Islamic Azad Univ, Coll Sci, Dept Phys, Urmia Branch, Orumiyeh, Iran; [Golmankhane, Aireza K.] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkiye; [Hazarika, Bipan] Gauhati Univ, Dept Math, Gauhati, Assam, India en_US
dc.description.abstract In this work, a new integral so called *F alpha-integral with respect to local fractal derivatives are introduced. Several properties of *F alpha-integrals are discussed. Fundamental theorem for *F alpha-integrable functions is also introduced. A relationship ofF alpha and *F alpha integral is shown. Finally, as an application we solve fractal differential equation D alpha F[S alpha F (x)] = f[t, S alpha F (x)] with S alpha F(tau) = xi in sense of *F alpha-integral. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.2298/TSCI240719003K
dc.identifier.endpage 711 en_US
dc.identifier.issn 0354-9836
dc.identifier.issn 2334-7163
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-105001642211
dc.identifier.scopusquality Q3
dc.identifier.startpage 691 en_US
dc.identifier.uri https://doi.org/10.2298/TSCI240719003K
dc.identifier.volume 29 en_US
dc.identifier.wos WOS:001476283200022
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Vinca Inst Nuclear Sci en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractal Calculus en_US
dc.subject Fractal Differential Equation en_US
dc.subject Gauge Integral Ams (2010) en_US
dc.title On Generalized Local Fractal Calculus Associate With Gauge Integral and Applications en_US
dc.type Article en_US
dspace.entity.type Publication

Files