Multiplicity Results of Critical Local Equation Related To the Genus Theory

dc.authorscopusid 56015213900
dc.authorscopusid 57198500079
dc.authorscopusid 6603328862
dc.authorwosid Tunç, Cemil/Afh-0945-2022
dc.contributor.author Alimohammady, Mohsen
dc.contributor.author Rezvani, Asieh
dc.contributor.author Tunc, Cemil
dc.date.accessioned 2025-05-10T16:45:50Z
dc.date.available 2025-05-10T16:45:50Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Alimohammady, Mohsen] Univ Mazandarn, Fac Math Sci, Dept Math, Babolsar, Iran; [Rezvani, Asieh] Islamic Azad Univ, Dept Math, Qaemshahr Branch, Qaemshahr, Iran; [Tunc, Cemil] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-85080 Van, Turkiye en_US
dc.description.abstract Using variational methods, Krasnoselskii's genus theory and symmetric mountain pass theorem, we introduce the existence and multiplicity of solutions of a parameteric local equation. At first, we consider the following equation( -div[a(x, | backward difference u|) backward difference u] = mu(b(x)|u|s(x)-2 - |u|r(x)-2)u in S2, u = 0 on partial differential S2, where S2 subset of RN is a bounded domain, mu is a positive real parameter, p, r and s are continuous real functions on S2 over bar and a(x, xi) is of type |xi|p(x)-2. Next, we study boundedness and simplicity of eigenfunction for the case a(x, | backward difference u|) backward difference u = g(x)| backward difference u|p(x)-2 backward difference u, where g is an element of L infinity(S2) and g(x) >= 0 and the case a(x, | backward difference u|) backward difference u = (1 + backward difference u|2) p(x)-2 2 backward difference u such that p(x) equivalent to p. en_US
dc.description.sponsorship KRF [2003-041-C20009] en_US
dc.description.sponsorship This work was financially supported by KRF 2003-041-C20009. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.4134/CKMS.c220308
dc.identifier.endpage 1061 en_US
dc.identifier.issn 1225-1763
dc.identifier.issn 2234-3024
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-85176330287
dc.identifier.scopusquality Q4
dc.identifier.startpage 1045 en_US
dc.identifier.uri https://doi.org/10.4134/CKMS.c220308
dc.identifier.uri https://hdl.handle.net/20.500.14720/967
dc.identifier.volume 38 en_US
dc.identifier.wos WOS:001127420800012
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Korean Mathematical Soc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject P(X)-Laplacian en_US
dc.subject Modular Function en_US
dc.subject Genus Theory en_US
dc.title Multiplicity Results of Critical Local Equation Related To the Genus Theory en_US
dc.type Article en_US
dspace.entity.type Publication

Files