Multiplicity Results of Critical Local Equation Related To the Genus Theory
| dc.authorscopusid | 56015213900 | |
| dc.authorscopusid | 57198500079 | |
| dc.authorscopusid | 6603328862 | |
| dc.authorwosid | Tunç, Cemil/Afh-0945-2022 | |
| dc.contributor.author | Alimohammady, Mohsen | |
| dc.contributor.author | Rezvani, Asieh | |
| dc.contributor.author | Tunc, Cemil | |
| dc.date.accessioned | 2025-05-10T16:45:50Z | |
| dc.date.available | 2025-05-10T16:45:50Z | |
| dc.date.issued | 2023 | |
| dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
| dc.department-temp | [Alimohammady, Mohsen] Univ Mazandarn, Fac Math Sci, Dept Math, Babolsar, Iran; [Rezvani, Asieh] Islamic Azad Univ, Dept Math, Qaemshahr Branch, Qaemshahr, Iran; [Tunc, Cemil] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-85080 Van, Turkiye | en_US |
| dc.description.abstract | Using variational methods, Krasnoselskii's genus theory and symmetric mountain pass theorem, we introduce the existence and multiplicity of solutions of a parameteric local equation. At first, we consider the following equation( -div[a(x, | backward difference u|) backward difference u] = mu(b(x)|u|s(x)-2 - |u|r(x)-2)u in S2, u = 0 on partial differential S2, where S2 subset of RN is a bounded domain, mu is a positive real parameter, p, r and s are continuous real functions on S2 over bar and a(x, xi) is of type |xi|p(x)-2. Next, we study boundedness and simplicity of eigenfunction for the case a(x, | backward difference u|) backward difference u = g(x)| backward difference u|p(x)-2 backward difference u, where g is an element of L infinity(S2) and g(x) >= 0 and the case a(x, | backward difference u|) backward difference u = (1 + backward difference u|2) p(x)-2 2 backward difference u such that p(x) equivalent to p. | en_US |
| dc.description.sponsorship | KRF [2003-041-C20009] | en_US |
| dc.description.sponsorship | This work was financially supported by KRF 2003-041-C20009. | en_US |
| dc.description.woscitationindex | Emerging Sources Citation Index | |
| dc.identifier.doi | 10.4134/CKMS.c220308 | |
| dc.identifier.endpage | 1061 | en_US |
| dc.identifier.issn | 1225-1763 | |
| dc.identifier.issn | 2234-3024 | |
| dc.identifier.issue | 4 | en_US |
| dc.identifier.scopus | 2-s2.0-85176330287 | |
| dc.identifier.scopusquality | Q4 | |
| dc.identifier.startpage | 1045 | en_US |
| dc.identifier.uri | https://doi.org/10.4134/CKMS.c220308 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14720/967 | |
| dc.identifier.volume | 38 | en_US |
| dc.identifier.wos | WOS:001127420800012 | |
| dc.identifier.wosquality | N/A | |
| dc.language.iso | en | en_US |
| dc.publisher | Korean Mathematical Soc | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | P(X)-Laplacian | en_US |
| dc.subject | Modular Function | en_US |
| dc.subject | Genus Theory | en_US |
| dc.title | Multiplicity Results of Critical Local Equation Related To the Genus Theory | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |