Operator Valued Series, Almost Summability of Vector Valued Multipliers and (Weak) Compactness of Summing Operator
| dc.authorid | Karakus, Mahmut/0000-0002-4468-629X | |
| dc.authorscopusid | 57192188484 | |
| dc.authorscopusid | 55908183200 | |
| dc.authorwosid | Başar, Feyzi/X-4419-2019 | |
| dc.authorwosid | Karakuş, Mahmut/Hhy-8747-2022 | |
| dc.contributor.author | Karakus, Mahmut | |
| dc.contributor.author | Basar, Feyzi | |
| dc.date.accessioned | 2025-05-10T17:04:11Z | |
| dc.date.available | 2025-05-10T17:04:11Z | |
| dc.date.issued | 2020 | |
| dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
| dc.department-temp | [Karakus, Mahmut] Van Yuzuncu Yil Univ, Dept Math, Fac Sci, TR-65100 Van, Turkey; [Basar, Feyzi] Inonu Univ, Dept Primary Math Teacher Educ, TR-44280 Malatya, Turkey; [Basar, Feyzi] Kisikli Mah,Alim Sok,Alim Apt 7-6, TR-34692 Uskudar Istanbul, Turkey | en_US |
| dc.description | Karakus, Mahmut/0000-0002-4468-629X | en_US |
| dc.description.abstract | In this study, we introduce the vector valued multiplier spaces M-f(infinity)(Sigma T-k(k) ) and M-wf(infinity)(Sigma(k) T-k) by means of almost summability and weak almost summability, and a series of bounded linear operators. Since these multiplier spaces are equipped with the sup norm and are subspaces of l(infinity) (X), we obtain the completeness of a normed space via the multiplier spaces which are complete for every c(0) (X)-multiplier Cauchy series. We also characterize the continuity and (weakly) compactness of the summing operator S from the multiplier spaces M-f(infinity)(Sigma T-k(k) ) or M-wf(infinity)(Sigma(k) T-k) to an arbitrary normed space Y through c(0) (X)-multiplier Cauchy and too (X)-multiplier convergent series, respectively. Finally, we show that if Sigma(k) T-k is l(infinity) (X)-multiplier Cauchy, then the multiplier spaces of almost convergence and weak almost convergence are identical. These results are more general than the corresponding consequences given by Swartz [20], and are analogues given by Altay and Kama [6]. (C) 2019 Published by Elsevier Inc. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1016/j.jmaa.2019.123651 | |
| dc.identifier.issn | 0022-247X | |
| dc.identifier.issn | 1096-0813 | |
| dc.identifier.issue | 1 | en_US |
| dc.identifier.scopus | 2-s2.0-85075871465 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.uri | https://doi.org/10.1016/j.jmaa.2019.123651 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14720/5922 | |
| dc.identifier.volume | 484 | en_US |
| dc.identifier.wos | WOS:000508488800018 | |
| dc.identifier.wosquality | Q2 | |
| dc.language.iso | en | en_US |
| dc.publisher | Academic Press inc Elsevier Science | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Almost Convergence | en_US |
| dc.subject | L(Infinity)(X)- And C(0)(X)-Multiplier Convergent Series | en_US |
| dc.subject | Continuity And Compactness Of Summing Operator | en_US |
| dc.title | Operator Valued Series, Almost Summability of Vector Valued Multipliers and (Weak) Compactness of Summing Operator | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |