Evaluation of Random Forest Method for Agricultural Crop Classification

dc.authorid Gungor, Oguz/0000-0002-3280-5466
dc.authorid Akar, Ozlem/0000-0001-6381-4907
dc.authorscopusid 56534164400
dc.authorscopusid 37070300200
dc.authorscopusid 25651575100
dc.authorwosid Ok, Asli/M-3050-2013
dc.authorwosid Akar, Ozlem/Lig-8664-2024
dc.authorwosid Gungor, Oguz/Aau-6884-2020
dc.contributor.author Ok, Asli Ozdarici
dc.contributor.author Akar, Ozlem
dc.contributor.author Gungor, Oguz
dc.date.accessioned 2025-05-10T16:47:05Z
dc.date.available 2025-05-10T16:47:05Z
dc.date.issued 2012
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Akar, Ozlem; Gungor, Oguz] Karadeniz Tech Univ, Dept Geomat, Div Remote Sensing, TR-61080 Trabzon, Turkey; [Ok, Asli Ozdarici] Yuzuncu Yil Univ, TR-65080 Van, Turkey en_US
dc.description Gungor, Oguz/0000-0002-3280-5466; Akar, Ozlem/0000-0001-6381-4907 en_US
dc.description.abstract This study aims to examine the performance of Random Forest (RF) and Maximum Likelihood Classification (MLC) method to crop classification through pixel-based and parcel-based approaches. Analyses are performed on multispectral SPOT 5 image. First, the SPOT 5 image is classified using the classification methods in pixel-based manner. Next, the produced thematic maps are overlaid with the original agricultural parcels and the frequencies of the pixels within the parcels are computed. Then, the majority of the pixels are assigned as class label to the parcels. Results indicate that the overall accuracies of the parcel-based approach computed for the Random Forest method is 85.89%, which is about 8% better than the corresponding result of MLC. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.5721/EuJRS20124535
dc.identifier.endpage 432 en_US
dc.identifier.issn 2279-7254
dc.identifier.scopus 2-s2.0-84870344269
dc.identifier.scopusquality Q1
dc.identifier.startpage 421 en_US
dc.identifier.uri https://doi.org/10.5721/EuJRS20124535
dc.identifier.uri https://hdl.handle.net/20.500.14720/1342
dc.identifier.volume 45 en_US
dc.identifier.wos WOS:000311105200002
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Rf en_US
dc.subject Mlc en_US
dc.subject Spot 5 en_US
dc.subject Agriculture en_US
dc.subject Accuracy Assessment en_US
dc.title Evaluation of Random Forest Method for Agricultural Crop Classification en_US
dc.type Article en_US
dspace.entity.type Publication

Files