Constructions of the Soliton Solutions To the Good Boussinesq Equation
| dc.authorid | Alharbi, Ranked Among The Top 2% Of The Most Distinguished., Prof. Abdulghani/0000-0001-9248-5225 | |
| dc.authorid | Tunc, Cemil/0000-0003-2909-8753 | |
| dc.authorid | Alharbi, Abdulghani/0000-0002-1430-4684 | |
| dc.authorid | Almatrafi, Mohammed/0000-0002-6859-2028 | |
| dc.authorscopusid | 57214723296 | |
| dc.authorscopusid | 57193228003 | |
| dc.authorscopusid | 6603328862 | |
| dc.authorwosid | Tunç, Cemil/Afh-0945-2022 | |
| dc.authorwosid | Alharbi, Abdulghani/Agx-7816-2022 | |
| dc.authorwosid | Almatrafi, Mohammed/Grx-6925-2022 | |
| dc.contributor.author | Almatrafi, Mohammed Bakheet | |
| dc.contributor.author | Alharbi, Abdulghani Ragaa | |
| dc.contributor.author | Tunc, Cemil | |
| dc.date.accessioned | 2025-05-10T17:07:42Z | |
| dc.date.available | 2025-05-10T17:07:42Z | |
| dc.date.issued | 2020 | |
| dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
| dc.department-temp | [Almatrafi, Mohammed Bakheet; Alharbi, Abdulghani Ragaa] Taibah Univ, Coll Sci, Dept Math, Medina, Saudi Arabia; [Tunc, Cemil] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey | en_US |
| dc.description | Alharbi, Ranked Among The Top 2% Of The Most Distinguished., Prof. Abdulghani/0000-0001-9248-5225; Tunc, Cemil/0000-0003-2909-8753; Alharbi, Abdulghani/0000-0002-1430-4684; Almatrafi, Mohammed/0000-0002-6859-2028 | en_US |
| dc.description.abstract | The principal objective of the present paper is to manifest the exact traveling wave and numerical solutions of the good Boussinesq (GB) equation by employing He's semiinverse process and moving mesh approaches. We present the achieved exact results in the form of hyperbolic trigonometric functions. We test the stability of the exact results. We discretize the GB equation using the finite-difference method. We also investigate the accuracy and stability of the used numerical scheme. We sketch some 2D and 3D surfaces for some recorded results. We theoretically and graphically report numerical comparisons with exact traveling wave solutions. We measure the L-2 error to show the accuracy of the used numerical technique. We can conclude that the novel techniques deliver improved solution stability and accuracy. They are reliable and effective in extracting some new soliton solutions for some nonlinear partial differential equations (NLPDEs). | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1186/s13662-020-03089-8 | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.issue | 1 | en_US |
| dc.identifier.scopus | 2-s2.0-85095704068 | |
| dc.identifier.scopusquality | N/A | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-020-03089-8 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14720/6847 | |
| dc.identifier.volume | 2020 | en_US |
| dc.identifier.wos | WOS:000590798800002 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Good Boussinesq Equations | en_US |
| dc.subject | Soliton Solution | en_US |
| dc.subject | He Semiinverse Method | en_US |
| dc.subject | Adaptive Moving Mesh Equation | en_US |
| dc.subject | Stability | en_US |
| dc.subject | Monitor Function | en_US |
| dc.title | Constructions of the Soliton Solutions To the Good Boussinesq Equation | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |