Constructions of the Soliton Solutions To the Good Boussinesq Equation

dc.authorid Alharbi, Ranked Among The Top 2% Of The Most Distinguished., Prof. Abdulghani/0000-0001-9248-5225
dc.authorid Tunc, Cemil/0000-0003-2909-8753
dc.authorid Alharbi, Abdulghani/0000-0002-1430-4684
dc.authorid Almatrafi, Mohammed/0000-0002-6859-2028
dc.authorscopusid 57214723296
dc.authorscopusid 57193228003
dc.authorscopusid 6603328862
dc.authorwosid Tunç, Cemil/Afh-0945-2022
dc.authorwosid Alharbi, Abdulghani/Agx-7816-2022
dc.authorwosid Almatrafi, Mohammed/Grx-6925-2022
dc.contributor.author Almatrafi, Mohammed Bakheet
dc.contributor.author Alharbi, Abdulghani Ragaa
dc.contributor.author Tunc, Cemil
dc.date.accessioned 2025-05-10T17:07:42Z
dc.date.available 2025-05-10T17:07:42Z
dc.date.issued 2020
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Almatrafi, Mohammed Bakheet; Alharbi, Abdulghani Ragaa] Taibah Univ, Coll Sci, Dept Math, Medina, Saudi Arabia; [Tunc, Cemil] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey en_US
dc.description Alharbi, Ranked Among The Top 2% Of The Most Distinguished., Prof. Abdulghani/0000-0001-9248-5225; Tunc, Cemil/0000-0003-2909-8753; Alharbi, Abdulghani/0000-0002-1430-4684; Almatrafi, Mohammed/0000-0002-6859-2028 en_US
dc.description.abstract The principal objective of the present paper is to manifest the exact traveling wave and numerical solutions of the good Boussinesq (GB) equation by employing He's semiinverse process and moving mesh approaches. We present the achieved exact results in the form of hyperbolic trigonometric functions. We test the stability of the exact results. We discretize the GB equation using the finite-difference method. We also investigate the accuracy and stability of the used numerical scheme. We sketch some 2D and 3D surfaces for some recorded results. We theoretically and graphically report numerical comparisons with exact traveling wave solutions. We measure the L-2 error to show the accuracy of the used numerical technique. We can conclude that the novel techniques deliver improved solution stability and accuracy. They are reliable and effective in extracting some new soliton solutions for some nonlinear partial differential equations (NLPDEs). en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1186/s13662-020-03089-8
dc.identifier.issn 1687-1847
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85095704068
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1186/s13662-020-03089-8
dc.identifier.uri https://hdl.handle.net/20.500.14720/6847
dc.identifier.volume 2020 en_US
dc.identifier.wos WOS:000590798800002
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Good Boussinesq Equations en_US
dc.subject Soliton Solution en_US
dc.subject He Semiinverse Method en_US
dc.subject Adaptive Moving Mesh Equation en_US
dc.subject Stability en_US
dc.subject Monitor Function en_US
dc.title Constructions of the Soliton Solutions To the Good Boussinesq Equation en_US
dc.type Article en_US
dspace.entity.type Publication

Files