Local Spectrum, Local Spectral Radius, and Growth Conditions
dc.authorscopusid | 25123084500 | |
dc.contributor.author | Mustafayev, Heybetkulu | |
dc.date.accessioned | 2025-05-10T17:20:37Z | |
dc.date.available | 2025-05-10T17:20:37Z | |
dc.date.issued | 2021 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Mustafayev, Heybetkulu] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey | en_US |
dc.description.abstract | Let X be a complex Banach space and x is an element of X. Assume that a bounded linear operator parallel to etT(x)parallel to <= C-x (">1+vertical bar t vertical bar)(alpha) (alpha >= 0), for all t is an element of R and for some constant Cx > 0. For the function f from the Beurling algebra L omega 1 with the weight omega(t) (>1+t(alpha)) we can define an element in X, denoted by xf, which integrates etTx with respect to f. We present a complete description of the elements xf in the case when the local spectrum of T at x consists of one point. In the case 0 <=alpha<1, some estimates for the norm of Tx via the local spectral radius of T at x are obtained. Some applications of these results are also given. | en_US |
dc.description.sponsorship | TUBITAK (The Scientific and Technological Research Council of Turkey) 1001 Project MFAG [118F410] | en_US |
dc.description.sponsorship | The author was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) 1001 Project MFAG No: 118F410. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1007/s00605-021-01581-1 | |
dc.identifier.endpage | 741 | en_US |
dc.identifier.issn | 0026-9255 | |
dc.identifier.issn | 1436-5081 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-85108369047 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 717 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00605-021-01581-1 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/10156 | |
dc.identifier.volume | 195 | en_US |
dc.identifier.wos | WOS:000663517600002 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Mustafayev, Heybetkulu | |
dc.language.iso | en | en_US |
dc.publisher | Springer Wien | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Operator | en_US |
dc.subject | (Local) Spectrum | en_US |
dc.subject | (Local) Spectral | en_US |
dc.subject | Growth Condition | en_US |
dc.subject | Beurling Algebra | en_US |
dc.title | Local Spectrum, Local Spectral Radius, and Growth Conditions | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |