Characterizations of Unconditionally Convergent Andweakly Unconditionally Cauchy Series Via Wrp -Summability, Orlicz-Pettis Type Theorems and Compact Summing Operator
No Thumbnail Available
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Univ Nis, Fac Sci Math
Abstract
In the present paper, we give a new characterization of unconditional convergent series and give some new versions of the Orlicz-Pettis theorem via FQ s-family and a natural family F with the separation property S1 through wRp -summability which may be considered as a generalization of the well-known strong p-Ces`aro summability. Among other results, we obtain a new (weak) compactness criteria for the summing operator.
Description
Keywords
Turkish CoHE Thesis Center URL
WoS Q
Q3
Scopus Q
Q3
Source
Volume
36
Issue
18
Start Page
6347
End Page
6358