An Existence Results of a Product Type Fractional Functional Integral Equations Using Petryshyn's Fixed Point Theorem

dc.authorid Tunc, Cemil/0000-0003-2909-8753
dc.authorscopusid 59307946800
dc.authorscopusid 54906271400
dc.authorscopusid 6603328862
dc.authorwosid Tunç, Cemil/Afh-0945-2022
dc.contributor.author Halder, Sukanta
dc.contributor.author Tunc, Cemil
dc.date.accessioned 2025-06-01T20:03:24Z
dc.date.available 2025-06-01T20:03:24Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Halder, Sukanta] PDPM Indian Inst Informat Technol Design & Mfg, Math Discipline, Jabalpur, India; [Tunc, Cemil] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, 65080 Campus, Van, Turkiye en_US
dc.description Tunc, Cemil/0000-0003-2909-8753 en_US
dc.description.abstract In this paper, we investigate the existence of solutions for a new class of nonlinear product-type fractional functional integral equations (FFIEs) involving the Riemann-Liouville fractional integral operator. To establish the existence of at least one solution, we employ Petryshyn's fixed-point theorem (PFPT) combined with the concept of the measure of noncompactness (MNC) in the Banach space $ C[0,a] $ C[0,a] of continuous functions. Unlike other approaches based on Darbo's or Schauder's fixed-point theorems in Banach algebras, our method does not require the operator to map a closed convex subset onto itself, nor does it rely on the commonly assumed "sublinear condition" for the functional involved in the equation. Therefore, our results generalize and unify several existing results in the literature under fewer conditions. Additionally, to support our theoretical findings, we provide an example of such nonlinear FFIEs, thereby illustrating the applicability of the proposed results. en_US
dc.description.sponsorship University Grant Commission (UGC), Government of India [201610139246] en_US
dc.description.sponsorship The research work of the first author is supported by the University Grant Commission (UGC), Government of India, under the JRF fellowship reference No. 201610139246 (CSIR-UGCNET NOV 2020). en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/16583655.2025.2499255
dc.identifier.issn 1658-3655
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-105004432375
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1080/16583655.2025.2499255
dc.identifier.uri https://hdl.handle.net/20.500.14720/24963
dc.identifier.volume 19 en_US
dc.identifier.wos WOS:001482887600001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Measure Of Noncompactness (Mnc) en_US
dc.subject Fractional Functional Integral Equations (Ffies) en_US
dc.subject Petryshyn'S Fixed-Point Theorem (Pfpt) en_US
dc.title An Existence Results of a Product Type Fractional Functional Integral Equations Using Petryshyn's Fixed Point Theorem en_US
dc.type Article en_US
dspace.entity.type Publication

Files