A Class of Banach Algebras Whose Duals Have the Radon-Nikodym Property

dc.authorscopusid 25123084500
dc.contributor.author Mustafayev, H. S.
dc.date.accessioned 2025-05-10T17:07:23Z
dc.date.available 2025-05-10T17:07:23Z
dc.date.issued 2006
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Yuzuncu Yil Univ, Fac Arts & Sci, Dept Math, TR-65080 Van, Turkey en_US
dc.description.abstract Let A be a complex, commutative Banach algebra and let M-A be the structure space of A. Assume that there exists a continuous homomorphism h : L-1(G) -> A with dense range, where L-1(G) is the group algebra of a locally compact abelian group G. The main results of this paper can be summarized as follows: (a) If the dual space A* has the Radon-Nikodym property, then M-A is scattered (i.e., it has no nonempty perfect subset) and A* center dot A = (SPAN) over barM(A). (b) If the algebra A has an identity, then the space A* has the Radon-Nikodym property if and only if A* = (span) over bar M-A. Furthermore, any of these conditions implies that M-A is scattered. Several applications are given. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s00013-006-1753-3
dc.identifier.endpage 457 en_US
dc.identifier.issn 0003-889X
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-33750992173
dc.identifier.scopusquality Q3
dc.identifier.startpage 449 en_US
dc.identifier.uri https://doi.org/10.1007/s00013-006-1753-3
dc.identifier.uri https://hdl.handle.net/20.500.14720/6749
dc.identifier.volume 87 en_US
dc.identifier.wos WOS:000241947600009
dc.identifier.wosquality Q3
dc.institutionauthor Mustafayev, H. S.
dc.language.iso en en_US
dc.publisher Birkhauser verlag Ag en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title A Class of Banach Algebras Whose Duals Have the Radon-Nikodym Property en_US
dc.type Article en_US
dspace.entity.type Publication

Files