An Introduction to Fractal Lebesgue Integral
| dc.contributor.author | Kalita, Hemanta | |
| dc.contributor.author | Golmankhanehand, Alireza K. | |
| dc.date.accessioned | 2025-09-30T16:36:04Z | |
| dc.date.available | 2025-09-30T16:36:04Z | |
| dc.date.issued | 2025 | |
| dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
| dc.department-temp | [Kalita, Hemanta] VIT Bhopal Univ, Sch Adv Sci & Languages, Math Div, Bhopal Indore Highway, Bhopal, India; [Golmankhanehand, Alireza K.] Islamic Azad Univ, Coll Sci, Dept Phys, Urmia Branch, Orumiyeh, Iran; [Golmankhanehand, Alireza K.] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkiye | en_US |
| dc.description.abstract | This manuscript explores various characteristics of generalized fractal measures. We expand the concept of fractal integrals in relation to step functions and examine their numerous properties. Notably, since all step functions are classified as simple functions, we apply the aforementioned generalized measure to introduce Lebesgue-type integrals, referred to as FL-integrals. Additionally, we demonstrate that all F alpha {F<^>{\alpha}} -integrable functions are FL-integrals. Lastly, we address the bounded convergence theorem within the context of fractals. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1515/gmj-2025-2067 | |
| dc.identifier.issn | 1072-947X | |
| dc.identifier.issn | 1572-9176 | |
| dc.identifier.scopus | 2-s2.0-105014786014 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.uri | https://doi.org/10.1515/gmj-2025-2067 | |
| dc.identifier.wos | WOS:001563210800001 | |
| dc.identifier.wosquality | Q2 | |
| dc.language.iso | en | en_US |
| dc.publisher | Walter de Gruyter GmbH | en_US |
| dc.relation.ispartof | Georgian Mathematical Journal | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fractal Set | en_US |
| dc.subject | Fractal Functions | en_US |
| dc.subject | Generalized Fractal Measure | en_US |
| dc.subject | Fractal Calculus | en_US |
| dc.subject | 82Cxx | en_US |
| dc.title | An Introduction to Fractal Lebesgue Integral | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |