An Introduction to Fractal Lebesgue Integral

dc.contributor.author Kalita, Hemanta
dc.contributor.author Golmankhanehand, Alireza K.
dc.date.accessioned 2025-09-30T16:36:04Z
dc.date.available 2025-09-30T16:36:04Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Kalita, Hemanta] VIT Bhopal Univ, Sch Adv Sci & Languages, Math Div, Bhopal Indore Highway, Bhopal, India; [Golmankhanehand, Alireza K.] Islamic Azad Univ, Coll Sci, Dept Phys, Urmia Branch, Orumiyeh, Iran; [Golmankhanehand, Alireza K.] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkiye en_US
dc.description.abstract This manuscript explores various characteristics of generalized fractal measures. We expand the concept of fractal integrals in relation to step functions and examine their numerous properties. Notably, since all step functions are classified as simple functions, we apply the aforementioned generalized measure to introduce Lebesgue-type integrals, referred to as FL-integrals. Additionally, we demonstrate that all F alpha {F<^>{\alpha}} -integrable functions are FL-integrals. Lastly, we address the bounded convergence theorem within the context of fractals. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1515/gmj-2025-2067
dc.identifier.issn 1072-947X
dc.identifier.issn 1572-9176
dc.identifier.scopus 2-s2.0-105014786014
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1515/gmj-2025-2067
dc.identifier.wos WOS:001563210800001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Walter de Gruyter GmbH en_US
dc.relation.ispartof Georgian Mathematical Journal en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fractal Set en_US
dc.subject Fractal Functions en_US
dc.subject Generalized Fractal Measure en_US
dc.subject Fractal Calculus en_US
dc.subject 82Cxx en_US
dc.title An Introduction to Fractal Lebesgue Integral en_US
dc.type Article en_US
dspace.entity.type Publication

Files