Fractal Signal Processing
| dc.authorwosid | Khalili Golmankhaneh, Alireza/L-1554-2013 | |
| dc.contributor.author | Golmankhaneh, Alireza Khalili | |
| dc.contributor.author | Pham, Diana | |
| dc.contributor.author | Banchuin, Rawid | |
| dc.contributor.author | Sevli, Hamdullah | |
| dc.date.accessioned | 2025-10-30T15:28:25Z | |
| dc.date.available | 2025-10-30T15:28:25Z | |
| dc.date.issued | 2025 | |
| dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
| dc.department-temp | [Golmankhaneh, Alireza Khalili] Ur C Islamic Azad Univ, Dept Phys, Orumiyeh 63896, West Azerbaijan, Iran; [Golmankhaneh, Alireza Khalili] Van Yuzuncu Yil Univ, Dept Math, TR-65080 Van, Turkiye; [Pham, Diana] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA; [Banchuin, Rawid] Siam Univ, Grad Sch Informat Technol, Bangkok, Thailand; [Sevli, Hamdullah] Van Yuzuncu Yil Univ, Dept Comp Engn, TR-65080 Van, Turkiye | en_US |
| dc.description.abstract | This paper presents a novel low-pass filtering framework based on Fractal First \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-order and Second \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-order designs, formulated within the framework of fractal calculus. By incorporating the structure of fractal time, the proposed filters can effectively process signals with intricate, non-differentiable characteristics. The fractal second \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-order low-pass filter is applied to a simulated noisy ECG signal, demonstrating significant noise suppression while preserving the essential morphological features of the waveform. A comparative study with the classical Bessel low-pass filter further illustrates the advantages of the fractal approach in capturing scale-invariant and self-similar properties of biomedical signals. These results highlight the potential of fractal-order filters for advanced biomedical signal processing. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1007/s00034-025-03338-9 | |
| dc.identifier.issn | 0278-081X | |
| dc.identifier.issn | 1531-5878 | |
| dc.identifier.scopus | 2-s2.0-105017019269 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.uri | https://doi.org/10.1007/s00034-025-03338-9 | |
| dc.identifier.wos | WOS:001577759700001 | |
| dc.identifier.wosquality | Q3 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Birkhauser | en_US |
| dc.relation.ispartof | Circuits Systems and Signal Processing | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Low-Pass Filter | en_US |
| dc.subject | Fractal Filter | en_US |
| dc.subject | ECG Signal Processing | en_US |
| dc.subject | Fractal Alpha-Order Filter | en_US |
| dc.title | Fractal Signal Processing | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article |