Fractal Signal Processing

dc.authorwosid Khalili Golmankhaneh, Alireza/L-1554-2013
dc.contributor.author Golmankhaneh, Alireza Khalili
dc.contributor.author Pham, Diana
dc.contributor.author Banchuin, Rawid
dc.contributor.author Sevli, Hamdullah
dc.date.accessioned 2025-10-30T15:28:25Z
dc.date.available 2025-10-30T15:28:25Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Golmankhaneh, Alireza Khalili] Ur C Islamic Azad Univ, Dept Phys, Orumiyeh 63896, West Azerbaijan, Iran; [Golmankhaneh, Alireza Khalili] Van Yuzuncu Yil Univ, Dept Math, TR-65080 Van, Turkiye; [Pham, Diana] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA; [Banchuin, Rawid] Siam Univ, Grad Sch Informat Technol, Bangkok, Thailand; [Sevli, Hamdullah] Van Yuzuncu Yil Univ, Dept Comp Engn, TR-65080 Van, Turkiye en_US
dc.description.abstract This paper presents a novel low-pass filtering framework based on Fractal First \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-order and Second \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-order designs, formulated within the framework of fractal calculus. By incorporating the structure of fractal time, the proposed filters can effectively process signals with intricate, non-differentiable characteristics. The fractal second \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-order low-pass filter is applied to a simulated noisy ECG signal, demonstrating significant noise suppression while preserving the essential morphological features of the waveform. A comparative study with the classical Bessel low-pass filter further illustrates the advantages of the fractal approach in capturing scale-invariant and self-similar properties of biomedical signals. These results highlight the potential of fractal-order filters for advanced biomedical signal processing. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s00034-025-03338-9
dc.identifier.issn 0278-081X
dc.identifier.issn 1531-5878
dc.identifier.scopus 2-s2.0-105017019269
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s00034-025-03338-9
dc.identifier.wos WOS:001577759700001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Springer Birkhauser en_US
dc.relation.ispartof Circuits Systems and Signal Processing en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Low-Pass Filter en_US
dc.subject Fractal Filter en_US
dc.subject ECG Signal Processing en_US
dc.subject Fractal Alpha-Order Filter en_US
dc.title Fractal Signal Processing en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article

Files