Fractal Signal Processing

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Birkhauser

Abstract

This paper presents a novel low-pass filtering framework based on Fractal First \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-order and Second \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-order designs, formulated within the framework of fractal calculus. By incorporating the structure of fractal time, the proposed filters can effectively process signals with intricate, non-differentiable characteristics. The fractal second \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-order low-pass filter is applied to a simulated noisy ECG signal, demonstrating significant noise suppression while preserving the essential morphological features of the waveform. A comparative study with the classical Bessel low-pass filter further illustrates the advantages of the fractal approach in capturing scale-invariant and self-similar properties of biomedical signals. These results highlight the potential of fractal-order filters for advanced biomedical signal processing.

Description

Keywords

Low-Pass Filter, Fractal Filter, ECG Signal Processing, Fractal Alpha-Order Filter

Turkish CoHE Thesis Center URL

WoS Q

Q3

Scopus Q

Q2

Source

Circuits Systems and Signal Processing

Volume

Issue

Start Page

End Page

Google Scholar Logo
Google Scholar™