Fractal Frenet Equations for Fractal Curves: A Fractal Calculus Approach

dc.authorwosid Khalili Golmankhaneh, Alireza/L-1554-2013
dc.authorwosid Prodanov, Dimiter/Aae-8938-2019
dc.contributor.author Golmankhaneh, Alireza Khalili
dc.contributor.author Jorgensen, Palle E. T.
dc.contributor.author Prodanov, Dimiter
dc.date.accessioned 2025-09-30T16:36:05Z
dc.date.available 2025-09-30T16:36:05Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Golmankhaneh, Alireza Khalili] Islamic Azad Univ, Dept Phys, Orumiyeh, West Azerbaijan, Iran; [Golmankhaneh, Alireza Khalili] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkiye; [Jorgensen, Palle E. T.] Univ Iowa, Dept Math, Iowa City, IA 52242 USA; [Prodanov, Dimiter] Bulgarian Acad Sci, Inst Informat & Commun Technol IICT, PAML LN, Sofia 1113, Bulgaria en_US
dc.description.abstract The formulation of Fractal Frenet equations, which are differential equations intended to characterize the geometric behavior of vector fields along fractal curves, is presented in this study. It offers a framework for calculating the length of such irregular curves by introducing a fractal analogue of arc length. The notion of a fractal unit tangent vector, which characterizes the local direction of the curve, and the fractal curvature vector, which depicts the bending behavior at each point, are two examples of fundamental geometric ideas that are extended to the fractal environment. Furthermore, the concept of fractal torsion is established to describe the three-dimensional spatial twisting of fractal curves. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.1007/s40590-025-00804-x
dc.identifier.issn 1405-213X
dc.identifier.issn 2296-4495
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-105015072242
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s40590-025-00804-x
dc.identifier.volume 31 en_US
dc.identifier.wos WOS:001564022800001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer int Publ Ag en_US
dc.relation.ispartof Boletin De La Sociedad Matematica Mexicana en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fractal Calculus en_US
dc.subject Fractal Curves en_US
dc.subject Fractal Frenet Equations en_US
dc.subject Analogue Of Arc Length en_US
dc.title Fractal Frenet Equations for Fractal Curves: A Fractal Calculus Approach en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article

Files