Fractal Frenet Equations for Fractal Curves: A Fractal Calculus Approach
| dc.authorwosid | Khalili Golmankhaneh, Alireza/L-1554-2013 | |
| dc.authorwosid | Prodanov, Dimiter/Aae-8938-2019 | |
| dc.contributor.author | Golmankhaneh, Alireza Khalili | |
| dc.contributor.author | Jorgensen, Palle E. T. | |
| dc.contributor.author | Prodanov, Dimiter | |
| dc.date.accessioned | 2025-09-30T16:36:05Z | |
| dc.date.available | 2025-09-30T16:36:05Z | |
| dc.date.issued | 2025 | |
| dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
| dc.department-temp | [Golmankhaneh, Alireza Khalili] Islamic Azad Univ, Dept Phys, Orumiyeh, West Azerbaijan, Iran; [Golmankhaneh, Alireza Khalili] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkiye; [Jorgensen, Palle E. T.] Univ Iowa, Dept Math, Iowa City, IA 52242 USA; [Prodanov, Dimiter] Bulgarian Acad Sci, Inst Informat & Commun Technol IICT, PAML LN, Sofia 1113, Bulgaria | en_US |
| dc.description.abstract | The formulation of Fractal Frenet equations, which are differential equations intended to characterize the geometric behavior of vector fields along fractal curves, is presented in this study. It offers a framework for calculating the length of such irregular curves by introducing a fractal analogue of arc length. The notion of a fractal unit tangent vector, which characterizes the local direction of the curve, and the fractal curvature vector, which depicts the bending behavior at each point, are two examples of fundamental geometric ideas that are extended to the fractal environment. Furthermore, the concept of fractal torsion is established to describe the three-dimensional spatial twisting of fractal curves. | en_US |
| dc.description.woscitationindex | Emerging Sources Citation Index | |
| dc.identifier.doi | 10.1007/s40590-025-00804-x | |
| dc.identifier.issn | 1405-213X | |
| dc.identifier.issn | 2296-4495 | |
| dc.identifier.issue | 3 | en_US |
| dc.identifier.scopus | 2-s2.0-105015072242 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.uri | https://doi.org/10.1007/s40590-025-00804-x | |
| dc.identifier.volume | 31 | en_US |
| dc.identifier.wos | WOS:001564022800001 | |
| dc.identifier.wosquality | N/A | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer int Publ Ag | en_US |
| dc.relation.ispartof | Boletin De La Sociedad Matematica Mexicana | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fractal Calculus | en_US |
| dc.subject | Fractal Curves | en_US |
| dc.subject | Fractal Frenet Equations | en_US |
| dc.subject | Analogue Of Arc Length | en_US |
| dc.title | Fractal Frenet Equations for Fractal Curves: A Fractal Calculus Approach | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article |