Fractal Frenet Equations for Fractal Curves: a Fractal Calculus Approach

dc.authorscopusid 57555731900
dc.authorscopusid 55580299600
dc.authorscopusid 8694463400
dc.contributor.author Khalili Golmankhaneh, Ali
dc.contributor.author Jørgensen, Palle E.T.
dc.contributor.author Prodanov, Dimiter P.
dc.date.accessioned 2025-09-30T16:36:05Z
dc.date.available 2025-09-30T16:36:05Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Khalili Golmankhaneh] Ali, Department of Physics, Islamic Azad University, Urmia Branch, Urmia, Iran, Department of Mathematics, Van Yüzüncü Yıl Üniversitesi, Van, Turkey; [Jørgensen] Palle E.T., Department of Mathematics, University of Iowa, Iowa City, United States; [Prodanov] Dimiter P., Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria en_US
dc.description.abstract The formulation of Fractal Frenet equations, which are differential equations intended to characterize the geometric behavior of vector fields along fractal curves, is presented in this study. It offers a framework for calculating the length of such irregular curves by introducing a fractal analogue of arc length. The notion of a fractal unit tangent vector, which characterizes the local direction of the curve, and the fractal curvature vector, which depicts the bending behavior at each point, are two examples of fundamental geometric ideas that are extended to the fractal environment. Furthermore, the concept of fractal torsion is established to describe the three-dimensional spatial twisting of fractal curves. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1007/s40590-025-00804-x
dc.identifier.issn 2296-4495
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-105015072242
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s40590-025-00804-x
dc.identifier.uri https://hdl.handle.net/20.500.14720/28598
dc.identifier.volume 31 en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Birkhauser en_US
dc.relation.ispartof Boletin De La Sociedad Matematica Mexicana en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Analogue of Arc Length en_US
dc.subject Fractal Calculus en_US
dc.subject Fractal Curves en_US
dc.subject Fractal Frenet Equations en_US
dc.title Fractal Frenet Equations for Fractal Curves: a Fractal Calculus Approach en_US
dc.type Article en_US
dspace.entity.type Publication

Files