Machine Learning Algorithms Using the Inflammatory Prognostic Index for Contrast-Induced Nephropathy in Nstemi Patients
dc.authorid | Tanboga, Ibrahim Halil/0000-0003-4546-9227 | |
dc.authorid | Selcuk, Murat/0000-0003-2873-5159 | |
dc.authorid | Cinar, Tufan/0000-0001-8188-5020 | |
dc.authorwosid | Şaylık, Faysal/Gqq-3347-2022 | |
dc.authorwosid | Cinar, Tufan/Abd-4630-2020 | |
dc.authorwosid | Tanboga, Ibrahim/E-8886-2010 | |
dc.contributor.author | Saylik, Faysal | |
dc.contributor.author | Cinar, Tufan | |
dc.contributor.author | Selcuk, Murat | |
dc.contributor.author | Tanboga, Ibrahim Halil | |
dc.date.accessioned | 2025-05-10T17:24:13Z | |
dc.date.available | 2025-05-10T17:24:13Z | |
dc.date.issued | 2024 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Saylik, Faysal] Hlth Sci Univ, Van Training & Res Hosp, Dept Cardiol, Van, Turkiye; [Cinar, Tufan] Hlth Sci Univ, Sultan II Abdulhamid Han Training & Res Hosp, Dept Cardiol, Istanbul, Turkiye; [Selcuk, Murat] Sancaktepe Educ & Res Hosp, Dept Cardiol, TR-34100 Istanbul, Turkiye; [Tanboga, Ibrahim Halil] Hisar Intercontinental Hosp, Dept Cardiol, Istanbul, Turkiye; [Tanboga, Ibrahim Halil] Nisantasi Univ, Sch Hlth Sci, Dept Cardiol, Istanbul, Turkiye; [Tanboga, Ibrahim Halil] Ataturk Univ, Dept Biostat, Erzurum, Turkiye | en_US |
dc.description | Tanboga, Ibrahim Halil/0000-0003-4546-9227; Selcuk, Murat/0000-0003-2873-5159; Cinar, Tufan/0000-0001-8188-5020 | en_US |
dc.description.abstract | Aim: Inflammatory prognostic index (IPI), has been shown to be related with poor outcomes in cancer patients. We aimed to investigate the predictive role of IPI for contrast-induced nephropathy (CIN) development in non-ST segment elevation myocardial infarction patients using a nomogram and performing machine learning (ML) algorithms.Materials & methods: A total of 178 patients with CIN (+) and 1511 with CIN (-) were included.Results: CIN (+) patients had higher IPI levels, and IPI was independently associated with CIN. A risk prediction nomogram including IPI had a higher predictive ability and good calibration. Naive Bayes and k-nearest neighbors were the best ML algorithms for the prediction of CIN patients.Conclusion: IPI might be used as an easily obtainable marker for CIN prediction using ML algorithms. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1080/17520363.2024.2422810 | |
dc.identifier.endpage | 1015 | en_US |
dc.identifier.issn | 1752-0363 | |
dc.identifier.issn | 1752-0371 | |
dc.identifier.issue | 23 | en_US |
dc.identifier.pmid | 39535134 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 1007 | en_US |
dc.identifier.uri | https://doi.org/10.1080/17520363.2024.2422810 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/11117 | |
dc.identifier.volume | 18 | en_US |
dc.identifier.wos | WOS:001355043100001 | |
dc.identifier.wosquality | Q4 | |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Contrast-Induced Nephropathy | en_US |
dc.subject | Inflammatory Prognostic Index | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Nomogram | en_US |
dc.subject | Non-St Segment Elevation Myocardial Infarction | en_US |
dc.title | Machine Learning Algorithms Using the Inflammatory Prognostic Index for Contrast-Induced Nephropathy in Nstemi Patients | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |