Machine Learning Algorithms Using the Inflammatory Prognostic Index for Contrast-Induced Nephropathy in Nstemi Patients

dc.authorid Tanboga, Ibrahim Halil/0000-0003-4546-9227
dc.authorid Selcuk, Murat/0000-0003-2873-5159
dc.authorid Cinar, Tufan/0000-0001-8188-5020
dc.authorwosid Şaylık, Faysal/Gqq-3347-2022
dc.authorwosid Cinar, Tufan/Abd-4630-2020
dc.authorwosid Tanboga, Ibrahim/E-8886-2010
dc.contributor.author Saylik, Faysal
dc.contributor.author Cinar, Tufan
dc.contributor.author Selcuk, Murat
dc.contributor.author Tanboga, Ibrahim Halil
dc.date.accessioned 2025-05-10T17:24:13Z
dc.date.available 2025-05-10T17:24:13Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Saylik, Faysal] Hlth Sci Univ, Van Training & Res Hosp, Dept Cardiol, Van, Turkiye; [Cinar, Tufan] Hlth Sci Univ, Sultan II Abdulhamid Han Training & Res Hosp, Dept Cardiol, Istanbul, Turkiye; [Selcuk, Murat] Sancaktepe Educ & Res Hosp, Dept Cardiol, TR-34100 Istanbul, Turkiye; [Tanboga, Ibrahim Halil] Hisar Intercontinental Hosp, Dept Cardiol, Istanbul, Turkiye; [Tanboga, Ibrahim Halil] Nisantasi Univ, Sch Hlth Sci, Dept Cardiol, Istanbul, Turkiye; [Tanboga, Ibrahim Halil] Ataturk Univ, Dept Biostat, Erzurum, Turkiye en_US
dc.description Tanboga, Ibrahim Halil/0000-0003-4546-9227; Selcuk, Murat/0000-0003-2873-5159; Cinar, Tufan/0000-0001-8188-5020 en_US
dc.description.abstract Aim: Inflammatory prognostic index (IPI), has been shown to be related with poor outcomes in cancer patients. We aimed to investigate the predictive role of IPI for contrast-induced nephropathy (CIN) development in non-ST segment elevation myocardial infarction patients using a nomogram and performing machine learning (ML) algorithms.Materials & methods: A total of 178 patients with CIN (+) and 1511 with CIN (-) were included.Results: CIN (+) patients had higher IPI levels, and IPI was independently associated with CIN. A risk prediction nomogram including IPI had a higher predictive ability and good calibration. Naive Bayes and k-nearest neighbors were the best ML algorithms for the prediction of CIN patients.Conclusion: IPI might be used as an easily obtainable marker for CIN prediction using ML algorithms. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/17520363.2024.2422810
dc.identifier.endpage 1015 en_US
dc.identifier.issn 1752-0363
dc.identifier.issn 1752-0371
dc.identifier.issue 23 en_US
dc.identifier.pmid 39535134
dc.identifier.scopusquality Q3
dc.identifier.startpage 1007 en_US
dc.identifier.uri https://doi.org/10.1080/17520363.2024.2422810
dc.identifier.uri https://hdl.handle.net/20.500.14720/11117
dc.identifier.volume 18 en_US
dc.identifier.wos WOS:001355043100001
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Contrast-Induced Nephropathy en_US
dc.subject Inflammatory Prognostic Index en_US
dc.subject Machine Learning en_US
dc.subject Nomogram en_US
dc.subject Non-St Segment Elevation Myocardial Infarction en_US
dc.title Machine Learning Algorithms Using the Inflammatory Prognostic Index for Contrast-Induced Nephropathy in Nstemi Patients en_US
dc.type Article en_US
dspace.entity.type Publication

Files