The Unit-Cauchy Quantile Regression Model With Variates Observed on (0, 1): Percentages, Proportions, and Fractions

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Hacettepe University

Abstract

In this study, a new parametric quantile regression model is introduced as an alternative to the beta regression and Kumaraswamy quantile regression model. The proposed quantile regression model is obtained by reparametrization of the unit-Cauchy distribution in terms of its quantiles. The model parameters are estimated using the maximum likelihood method. A Monte-Carlo simulation study is conducted to show the efficiency of the maximum likelihood estimation of the model parameters. The implementation of the proposed quantile regression model is shown by using real datasets. Quantile regression models based on unit-Weibull, unit generalized half normal, and unit Burr XII are also considered in the applications. The application results show that the proposed quantile regression model is preferable over its rivals when several comparison criteria are taken into account. In addition, the fitting plots indicate that the proposed quantile regression model fits extreme observations on the right tail better than its strong rivals, which is important in quantile regression modeling. © 2025, Hacettepe University. All rights reserved.

Description

Keywords

Maximum Likelihood, Monte-Carlo Simulation, Parametric Model, Quantile Regression, Unit-Cauchy

Turkish CoHE Thesis Center URL

WoS Q

Q3

Scopus Q

Q3

Source

Hacettepe Journal of Mathematics and Statistics

Volume

54

Issue

2

Start Page

633

End Page

655
Google Scholar Logo
Google Scholar™