YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Prediction of Clinical Outcomes in Women With Placenta Accreta Spectrum Using Machine Learning Models: an International Multicenter Study

dc.authorid Ates, Cagri/0000-0001-5341-4950
dc.authorid Melekoglu, Rauf/0000-0001-7113-6691
dc.authorid Suardi, Dodi/0000-0003-3084-8101
dc.authorid Shih, Jin-Chung/0000-0002-0296-4327
dc.authorid Irianti, Setyorini/0000-0003-0865-2620
dc.authorid Akhmadeev, Nariman/0000-0003-0908-7256
dc.authorid Hortu, Ismet/0000-0003-3833-0999
dc.authorscopusid 55091734100
dc.authorscopusid 56444430100
dc.authorscopusid 16837072400
dc.authorscopusid 55193447200
dc.authorscopusid 22733730100
dc.authorscopusid 55599080500
dc.authorscopusid 58257058000
dc.authorwosid Tochie, Joel/L-2366-2019
dc.authorwosid Itil, Ismail/Mai-2352-2025
dc.authorwosid Yilmaz, Ercan/Aaa-1818-2021
dc.authorwosid Machado, Ana/Hlv-9704-2023
dc.authorwosid Akhmadeev, Nariman/Hch-1638-2022
dc.authorwosid Shih, Jin-Chung/Aaq-8651-2021
dc.authorwosid Sagol, Sermet/Gsn-9501-2022
dc.contributor.author Shazly, Sherif A.
dc.contributor.author Hortu, Ismet
dc.contributor.author Shih, Jin-Chung
dc.contributor.author Melekoglu, Rauf
dc.contributor.author Fan, Shangrong
dc.contributor.author Ahmed, Farhat ul Ain
dc.contributor.author Anan, Mohamed A.
dc.date.accessioned 2025-05-10T17:12:58Z
dc.date.available 2025-05-10T17:12:58Z
dc.date.issued 2022
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Shazly, Sherif A.] Assiut Univ, Dept Obstet & Gynaecol, Assiut, Egypt; [Hortu, Ismet; Ergenoglu, Ahmet M.; Yeniel, Ahmet O.; Sagol, Sermet; Itil, Ismail M.] Ege Univ, Dept Obstet & Gynaecol, Sch Med, Izmir, Turkey; [Shih, Jin-Chung; Kang, Jessica; Huang, Kuan-Ying] Natl Taiwan Univ, Dept Obstet & Gynaecol, Coll Med, Taipei, Taiwan; [Melekoglu, Rauf; Yilmaz, Ercan] Inonu Univ, Dept Obstet & Gynaecol, Malatya, Turkey; [Fan, Shangrong; Liang, Yiheng] Peking Univ Shenzhen Hosp, Dept Obstet & Gynaecol, Shenzhen, Peoples R China; [Ahmed, Farhat ul Ain; Aziz, Hijab; Akhter, Tayyiba; Ambreen, Afshan] Fatima Mem Hosp, Dept Obstet & Gynaecol, Lahore, Pakistan; [Karaman, Erbil; Ates, Cagri] Yuzuncu Yil Univ, Dept Obstet & Gynaecol, Van, Turkey; [Fatkullin, Ildar; Khasanov, Albir; Larisa, Fatkullina; Akhmadeev, Nariman] Kazan State Med Univ, Dept Obstet & Gynaecol, Kazan, Russia; [Pinto, Pedro, V; Machado, Ana Paula; Montenegro, Nuno] Ctr Hosp Sao Joao, Serv Ginecol & Obstet, Porto, Portugal; [Irianti, Setyorini; Effendi, Jusuf S.; Suardi, Dodi; Pramatirta, Ahmad Y.; Aziz, Muhamad A.; Siddiq, Amilia] Univ Padjadjaran Bandung, Taskforce Placenta Accreta Spectrum, Bandung, Indonesia; [Tochie, Joel Noutakdie; Ofakem, Ingrid; Dohbit, Julius Sama] Univ Yaounde I, Fac Med & Biomed Sci, Dept Obstet & Gynaecol, Yaounde, Cameroon; [Abdelbadie, Amr S.; Fahmy, Mohamed S.; Anan, Mohamed A.] Aswan Univ Hosp, Dept Obstet & Gynaecol, Aswan, Egypt; [Karaman, Yasemin] Lokman Hekim Hayat Hosp, Dept Obstet & Gynaecol, Van, Turkey; [Vatanina, Adelina] Minist Healthcare Republ Tatarstan, Republ Clin Hosp, Kazan, Russia en_US
dc.description Ates, Cagri/0000-0001-5341-4950; Melekoglu, Rauf/0000-0001-7113-6691; Suardi, Dodi/0000-0003-3084-8101; Shih, Jin-Chung/0000-0002-0296-4327; Irianti, Setyorini/0000-0003-0865-2620; Akhmadeev, Nariman/0000-0003-0908-7256; Shazly, Sherif/0000-0003-1062-9227; Hortu, Ismet/0000-0003-3833-0999 en_US
dc.description.abstract Introduction Placenta accreta spectrum is a major obstetric disorder that is associated with significant morbidity and mortality. The objective of this study is to establish a prediction model of clinical outcomes in these women Materials and methods PAS-ID is an international multicenter study that comprises 11 centers from 9 countries. Women who were diagnosed with PAS and were managed in the recruiting centers between 1 January 2010 and 31 December 2019 were included. Data were reanalyzed using machine learning (ML) models, and 2 models were created to predict outcomes using antepartum and perioperative features. ML model was conducted using python(R) programing language. The primary outcome was massive PAS-associated perioperative blood loss (intraoperative blood loss >= 2500 ml, triggering massive transfusion protocol, or complicated by disseminated intravascular coagulopathy). Other outcomes include prolonged hospitalization >7 days and admission to the intensive care unit (ICU). Results 727 women with PAS were included. The area under curve (AUC) for ML antepartum prediction model was 0.84, 0.81, and 0.82 for massive blood loss, prolonged hospitalization, and admission to ICU, respectively. Significant contributors to this model were parity, placental site, method of diagnosis, and antepartum hemoglobin. Combining baseline and perioperative variables, the ML model performed at 0.86, 0.90, and 0.86 for study outcomes, respectively. Ethnicity, pelvic invasion, and uterine incision were the most predictive factors in this model. Discussion ML models can be used to calculate the individualized risk of morbidity in women with PAS. Model-based risk assessment facilitates a priori delineation of management. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/14767058.2021.1918670
dc.identifier.endpage 6653 en_US
dc.identifier.issn 1476-7058
dc.identifier.issn 1476-4954
dc.identifier.issue 25 en_US
dc.identifier.pmid 34233555
dc.identifier.scopus 2-s2.0-85111741739
dc.identifier.scopusquality Q2
dc.identifier.startpage 6644 en_US
dc.identifier.uri https://doi.org/10.1080/14767058.2021.1918670
dc.identifier.uri https://hdl.handle.net/20.500.14720/8051
dc.identifier.volume 35 en_US
dc.identifier.wos WOS:000670531000001
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Obstetric Hemorrhage en_US
dc.subject Placenta Praevia en_US
dc.subject Cesarean Hysterectomy en_US
dc.subject Morbidly Adherent Placenta en_US
dc.subject Placenta Accreta Spectrum en_US
dc.subject Machine Learning en_US
dc.title Prediction of Clinical Outcomes in Women With Placenta Accreta Spectrum Using Machine Learning Models: an International Multicenter Study en_US
dc.type Article en_US

Files