YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Segmentation and Classification of Skin Burn Images With Artificial Intelligence: Development of a Mobile Application

dc.authorid Aydin, Muhammet Ali/0000-0002-2137-5114
dc.authorid Yildiz, Metin/0000-0003-0122-5677
dc.authorid Okuyar, Mehmet/0000-0002-3879-557X
dc.authorid Ciftci, Necmettin/0000-0002-4713-4212
dc.authorscopusid 57211455657
dc.authorscopusid 58148746500
dc.authorscopusid 58891425200
dc.authorscopusid 58890975900
dc.authorscopusid 57418145700
dc.authorscopusid 57364531900
dc.authorscopusid 57935167700
dc.authorwosid Yıldız, Mehmet/Agd-0569-2022
dc.authorwosid Yildirim, Mehmet/Aap-5425-2021
dc.authorwosid Aydın, Muhammet/Hci-7964-2022
dc.authorwosid Parlak, Mehmet/Acv-3502-2022
dc.authorwosid Yildiz, Metin/Abf-7252-2020
dc.authorwosid Ciftci, Necmettin/Afa-8043-2022
dc.contributor.author Yildiz, Metin
dc.contributor.author Sarpdagi, Yakup
dc.contributor.author Okuyar, Mehmet
dc.contributor.author Yildiz, Mehmet
dc.contributor.author Ciftci, Necmettin
dc.contributor.author Elkoca, Ayse
dc.contributor.author Bingol, Buenyamin
dc.date.accessioned 2025-05-10T17:23:49Z
dc.date.available 2025-05-10T17:23:49Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Yildiz, Metin] Sakarya Univ, Dept Nursing, Sakarya, Turkiye; [Sarpdagi, Yakup] Van Yuzuncu Yil Univ, Dept Nursing, Van, Turkiye; [Okuyar, Mehmet] Sakarya Univ Appl Sci, Dept Mechatron Engn, Sakarya, Turkiye; [Yildiz, Mehmet] Sakarya Univ Appl Sci, Distance Educ Res & Applicat Ctr, Sakarya, Turkiye; [Ciftci, Necmettin] Mus Alparslan Univ, Fac Hlth Sci, Dept Nursing, TR-49100 Mus, Turkiye; [Elkoca, Ayse] Gaziantep Islamic Univ Sci & Technol, Fac Hlth Sci, Midwifery, Turkiye; [Yildirim, Mehmet Salih] Agri Ibrahim Cecen Univ, Vocat Sch Hlth Serv, Sch Hlth, Agri, Turkiye; [Aydin, Muhammet Ali] Ataturk Univ, Dept Nursing, Erzurum, Turkiye; [Parlak, Mehmet] Ataturk Univ, Dept Nursing, Erzurum, Turkiye; [Bingol, Buenyamin] Sakarya Univ, Elect Elect Engn, Sakarya, Turkiye en_US
dc.description Aydin, Muhammet Ali/0000-0002-2137-5114; Yildiz, Metin/0000-0003-0122-5677; Okuyar, Mehmet/0000-0002-3879-557X; Ciftci, Necmettin/0000-0002-4713-4212 en_US
dc.description.abstract Aim: This study was conducted to determine the segmentation, classification, object detection, and accuracy of skin burn images using artificial intelligence and a mobile application. With this study, individuals were able to determine the degree of burns and see how to intervene through the mobile application. Methods: This research was conducted between 26.10.2021-01.09.2023. In this study, the dataset was handled in two stages. In the first stage, the open -access dataset was taken from https://universe.roboflow.com/, and the burn images dataset was created. In the second stage, in order to determine the accuracy of the developed system and artificial intelligence model, the patients admitted to the hospital were identified with our own design Burn Wound Detection Android application. Results: In our study, YOLO V7 architecture was used for segmentation, classification, and object detection. There are 21018 data in this study, and 80% of them are used as training data, and 20% of them are used as test data. The YOLO V7 model achieved a success rate of 75.12% on the test data. The Burn Wound Detection Android mobile application that we developed in the study was used to accurately detect images of individuals. Conclusion: In this study, skin burn images were segmented, classified, object detected, and a mobile application was developed using artificial intelligence. First aid is crucial in burn cases, and it is an important development for public health that people living in the periphery can quickly determine the degree of burn through the mobile application and provide first aid according to the instructions of the mobile application. (c) 2024 Elsevier Ltd and ISBI. All rights reserved. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.burns.2024.01.007
dc.identifier.endpage 979 en_US
dc.identifier.issn 0305-4179
dc.identifier.issn 1879-1409
dc.identifier.issue 4 en_US
dc.identifier.pmid 38331663
dc.identifier.scopus 2-s2.0-85185333652
dc.identifier.scopusquality Q2
dc.identifier.startpage 966 en_US
dc.identifier.uri https://doi.org/10.1016/j.burns.2024.01.007
dc.identifier.uri https://hdl.handle.net/20.500.14720/11007
dc.identifier.volume 50 en_US
dc.identifier.wos WOS:001224640400004
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Burn en_US
dc.subject Segmentation en_US
dc.subject Classification en_US
dc.subject Mobile Application en_US
dc.subject Object Detection en_US
dc.title Segmentation and Classification of Skin Burn Images With Artificial Intelligence: Development of a Mobile Application en_US
dc.type Article en_US

Files