Endometrial Cancer Individualized Scoring System (Eciss): a Machine Learning-Based Prediction Model of Endometrial Cancer Prognosis
dc.authorid | Di Giuseppe, Jacopo/0000-0002-6162-6299 | |
dc.authorid | Shazly, Sherif/0000-0003-1062-9227 | |
dc.authorid | Coronado, Pluvio/0000-0003-0357-2015 | |
dc.authorid | Ferrari, Federico/0000-0001-7065-2432 | |
dc.authorscopusid | 55091734100 | |
dc.authorscopusid | 7004866150 | |
dc.authorscopusid | 55274353300 | |
dc.authorscopusid | 55193447200 | |
dc.authorscopusid | 57189628015 | |
dc.authorscopusid | 6507385008 | |
dc.authorscopusid | 57222135543 | |
dc.authorwosid | Yordanov, Angel/Aah-5570-2019 | |
dc.authorwosid | Delli Carpini, Giovanni/Aac-2123-2019 | |
dc.authorwosid | Giannella, Luca/Itu-7446-2023 | |
dc.authorwosid | Onal, Cem/Hoc-5611-2023 | |
dc.authorwosid | Di Giuseppe, Jacopo/Izp-9523-2023 | |
dc.authorwosid | Ciavattini, Andrea/Aac-3266-2022 | |
dc.authorwosid | Knez, Jure/Abe-1700-2020 | |
dc.contributor.author | Shazly, Sherif A. | |
dc.contributor.author | Coronado, Pluvio J. | |
dc.contributor.author | Yilmaz, Ercan | |
dc.contributor.author | Melekoglu, Rauf | |
dc.contributor.author | Sahin, Hanifi | |
dc.contributor.author | Giannella, Luca | |
dc.contributor.author | Abdelbadie, Amr S. | |
dc.date.accessioned | 2025-05-10T16:45:52Z | |
dc.date.available | 2025-05-10T16:45:52Z | |
dc.date.issued | 2023 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Shazly, Sherif A.] Leeds Teaching Hosp NHS Trust, Womens Serv, Leeds, England; [Coronado, Pluvio J.] Hosp Clin San Carlos, Dept Obstet & Gynecol, Madrid, Spain; [Yilmaz, Ercan; Melekoglu, Rauf; Sahin, Hanifi] Inonu Univ, Dept Obstet & Gynecol, Malatya, Turkiye; [Giannella, Luca; Ciavattini, Andrea; Carpini, Giovanni Delli; Di Giuseppe, Jacopo] Polytech Univ Marche, Womans Hlth Sci Dept, Gynecol Sect, Ancona, Italy; [Yordanov, Angel; Karakadieva, Konstantina; Nedelcheva, Nevena Milenova; Vasileva-Slaveva, Mariela] Med Univ Pleven, Dept Gynecol Oncol, Pleven, Bulgaria; [Alcazar, Juan Luis; Chacon, Enrique; Manzour, Nabil; Vara, Julio] Clin Univ Navarra, Gynecol Oncol Div, Pamplona, Spain; [Karaman, Erbil; Karaaslan, Onur; Hacioglu, Latif; Korkmaz, Duygu] Van Yuzuncu Yil Univ, Dept Obstet & Gynecol, Div Gynecol Oncol, Van, Turkiye; [Onal, Cem] Baskent Univ, Fac Med, Dept Radiat Oncol, Adana, Turkiye; [Knez, Jure] Univ Med Ctr Maribor, Maribor, Slovenia; [Ferrari, Federico] Univ Brescia, Dept Clin & Expt Sci, Brescia, Italy; [Hosni, Esraa M.; Mahmoud, Mohamed E.; Elassall, Gena M.; Abdo, Mohamed S.; Mohamed, Yasmin I.] Middle Eastern Coll Obstetricians & Gynaecologist, Leeds, W Yorkshire, England; [Abdelbadie, Amr S.] Aswan Univ, Dept Obstet & Gynecol, Aswan, Egypt | en_US |
dc.description | Di Giuseppe, Jacopo/0000-0002-6162-6299; Shazly, Sherif/0000-0003-1062-9227; Coronado, Pluvio/0000-0003-0357-2015; Ferrari, Federico/0000-0001-7065-2432 | en_US |
dc.description.abstract | ObjectiveTo establish a prognostic model for endometrial cancer (EC) that individualizes a risk and management plan per patient and disease characteristics. MethodsA multicenter retrospective study conducted in nine European gynecologic cancer centers. Women with confirmed EC between January 2008 to December 2015 were included. Demographics, disease characteristics, management, and follow-up information were collected. Cancer-specific survival (CSS) and disease-free survival (DFS) at 3 and 5 years comprise the primary outcomes of the study. Machine learning algorithms were applied to patient and disease characteristics. Model I: pretreatment model. Calculated probability was added to management variables (model II: treatment model), and the second calculated probability was added to perioperative and postoperative variables (model III). ResultsOf 1150 women, 1144 were eligible for 3-year survival analysis and 860 for 5-year survival analysis. Model I, II, and III accuracies of prediction of 5-year CSS were 84.88%/85.47% (in train and test sets), 85.47%/84.88%, and 87.35%/86.05%, respectively. Model I predicted 3-year CSS at an accuracy of 91.34%/87.02%. Accuracies of models I, II, and III in predicting 5-year DFS were 74.63%/76.72%, 77.03%/76.72%, and 80.61%/77.78%, respectively. ConclusionThe Endometrial Cancer Individualized Scoring System (ECISS) is a novel machine learning tool assessing patient-specific survival probability with high accuracy. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1002/ijgo.14639 | |
dc.identifier.endpage | 768 | en_US |
dc.identifier.issn | 0020-7292 | |
dc.identifier.issn | 1879-3479 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.pmid | 36572053 | |
dc.identifier.scopus | 2-s2.0-85146999673 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 760 | en_US |
dc.identifier.uri | https://doi.org/10.1002/ijgo.14639 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/974 | |
dc.identifier.volume | 161 | en_US |
dc.identifier.wos | WOS:000915340000001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Artificial Intelligence | en_US |
dc.subject | Disease-Free Survival | en_US |
dc.subject | Overall Survival | en_US |
dc.subject | Uterine Cancer | en_US |
dc.title | Endometrial Cancer Individualized Scoring System (Eciss): a Machine Learning-Based Prediction Model of Endometrial Cancer Prognosis | en_US |
dc.type | Article | en_US |