YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Endometrial Cancer Individualized Scoring System (Eciss): a Machine Learning-Based Prediction Model of Endometrial Cancer Prognosis

dc.authorid Di Giuseppe, Jacopo/0000-0002-6162-6299
dc.authorid Shazly, Sherif/0000-0003-1062-9227
dc.authorid Coronado, Pluvio/0000-0003-0357-2015
dc.authorid Ferrari, Federico/0000-0001-7065-2432
dc.authorscopusid 55091734100
dc.authorscopusid 7004866150
dc.authorscopusid 55274353300
dc.authorscopusid 55193447200
dc.authorscopusid 57189628015
dc.authorscopusid 6507385008
dc.authorscopusid 57222135543
dc.authorwosid Yordanov, Angel/Aah-5570-2019
dc.authorwosid Delli Carpini, Giovanni/Aac-2123-2019
dc.authorwosid Giannella, Luca/Itu-7446-2023
dc.authorwosid Onal, Cem/Hoc-5611-2023
dc.authorwosid Di Giuseppe, Jacopo/Izp-9523-2023
dc.authorwosid Ciavattini, Andrea/Aac-3266-2022
dc.authorwosid Knez, Jure/Abe-1700-2020
dc.contributor.author Shazly, Sherif A.
dc.contributor.author Coronado, Pluvio J.
dc.contributor.author Yilmaz, Ercan
dc.contributor.author Melekoglu, Rauf
dc.contributor.author Sahin, Hanifi
dc.contributor.author Giannella, Luca
dc.contributor.author Abdelbadie, Amr S.
dc.date.accessioned 2025-05-10T16:45:52Z
dc.date.available 2025-05-10T16:45:52Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Shazly, Sherif A.] Leeds Teaching Hosp NHS Trust, Womens Serv, Leeds, England; [Coronado, Pluvio J.] Hosp Clin San Carlos, Dept Obstet & Gynecol, Madrid, Spain; [Yilmaz, Ercan; Melekoglu, Rauf; Sahin, Hanifi] Inonu Univ, Dept Obstet & Gynecol, Malatya, Turkiye; [Giannella, Luca; Ciavattini, Andrea; Carpini, Giovanni Delli; Di Giuseppe, Jacopo] Polytech Univ Marche, Womans Hlth Sci Dept, Gynecol Sect, Ancona, Italy; [Yordanov, Angel; Karakadieva, Konstantina; Nedelcheva, Nevena Milenova; Vasileva-Slaveva, Mariela] Med Univ Pleven, Dept Gynecol Oncol, Pleven, Bulgaria; [Alcazar, Juan Luis; Chacon, Enrique; Manzour, Nabil; Vara, Julio] Clin Univ Navarra, Gynecol Oncol Div, Pamplona, Spain; [Karaman, Erbil; Karaaslan, Onur; Hacioglu, Latif; Korkmaz, Duygu] Van Yuzuncu Yil Univ, Dept Obstet & Gynecol, Div Gynecol Oncol, Van, Turkiye; [Onal, Cem] Baskent Univ, Fac Med, Dept Radiat Oncol, Adana, Turkiye; [Knez, Jure] Univ Med Ctr Maribor, Maribor, Slovenia; [Ferrari, Federico] Univ Brescia, Dept Clin & Expt Sci, Brescia, Italy; [Hosni, Esraa M.; Mahmoud, Mohamed E.; Elassall, Gena M.; Abdo, Mohamed S.; Mohamed, Yasmin I.] Middle Eastern Coll Obstetricians & Gynaecologist, Leeds, W Yorkshire, England; [Abdelbadie, Amr S.] Aswan Univ, Dept Obstet & Gynecol, Aswan, Egypt en_US
dc.description Di Giuseppe, Jacopo/0000-0002-6162-6299; Shazly, Sherif/0000-0003-1062-9227; Coronado, Pluvio/0000-0003-0357-2015; Ferrari, Federico/0000-0001-7065-2432 en_US
dc.description.abstract ObjectiveTo establish a prognostic model for endometrial cancer (EC) that individualizes a risk and management plan per patient and disease characteristics. MethodsA multicenter retrospective study conducted in nine European gynecologic cancer centers. Women with confirmed EC between January 2008 to December 2015 were included. Demographics, disease characteristics, management, and follow-up information were collected. Cancer-specific survival (CSS) and disease-free survival (DFS) at 3 and 5 years comprise the primary outcomes of the study. Machine learning algorithms were applied to patient and disease characteristics. Model I: pretreatment model. Calculated probability was added to management variables (model II: treatment model), and the second calculated probability was added to perioperative and postoperative variables (model III). ResultsOf 1150 women, 1144 were eligible for 3-year survival analysis and 860 for 5-year survival analysis. Model I, II, and III accuracies of prediction of 5-year CSS were 84.88%/85.47% (in train and test sets), 85.47%/84.88%, and 87.35%/86.05%, respectively. Model I predicted 3-year CSS at an accuracy of 91.34%/87.02%. Accuracies of models I, II, and III in predicting 5-year DFS were 74.63%/76.72%, 77.03%/76.72%, and 80.61%/77.78%, respectively. ConclusionThe Endometrial Cancer Individualized Scoring System (ECISS) is a novel machine learning tool assessing patient-specific survival probability with high accuracy. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1002/ijgo.14639
dc.identifier.endpage 768 en_US
dc.identifier.issn 0020-7292
dc.identifier.issn 1879-3479
dc.identifier.issue 3 en_US
dc.identifier.pmid 36572053
dc.identifier.scopus 2-s2.0-85146999673
dc.identifier.scopusquality Q1
dc.identifier.startpage 760 en_US
dc.identifier.uri https://doi.org/10.1002/ijgo.14639
dc.identifier.uri https://hdl.handle.net/20.500.14720/974
dc.identifier.volume 161 en_US
dc.identifier.wos WOS:000915340000001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial Intelligence en_US
dc.subject Disease-Free Survival en_US
dc.subject Overall Survival en_US
dc.subject Uterine Cancer en_US
dc.title Endometrial Cancer Individualized Scoring System (Eciss): a Machine Learning-Based Prediction Model of Endometrial Cancer Prognosis en_US
dc.type Article en_US

Files