YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

End-Diastolic Segmentation of Intravascular Ultrasound Images Enables More Reproducible Volumetric Analysis of Atheroma Burden

dc.authorid Huang, Xingru/0000-0003-3971-8434
dc.authorid Moon, James/0000-0001-8071-1491
dc.authorid Bajaj, Retesh/0000-0001-7424-0419
dc.authorid Zhang, Qianni/0000-0001-7685-2187
dc.authorid Mathur, Anthony/0000-0001-7941-9653
dc.authorid Torii, Ryo/0000-0001-9479-8719
dc.authorid Erdogan, Emrah/0000-0003-2329-6310
dc.authorscopusid 35787034300
dc.authorscopusid 57217029355
dc.authorscopusid 57221031302
dc.authorscopusid 56347651700
dc.authorscopusid 57190865844
dc.authorscopusid 57216705724
dc.authorscopusid 55171939100
dc.authorwosid Garcia-Garcia, Hector/Aag-7471-2020
dc.authorwosid Huang, Xingru/Cai-6773-2022
dc.authorwosid Serruys, Patrick/Jfk-9898-2023
dc.authorwosid Moon, James/Aaa-9905-2020
dc.authorwosid Dijkstra, Jouke/C-2917-2012
dc.authorwosid Bajaj, Retesh/Miu-5564-2025
dc.authorwosid Moon, James/F-1031-2014
dc.contributor.author Erdogan, Emrah
dc.contributor.author Huang, Xingru
dc.contributor.author Cooper, Jackie
dc.contributor.author Jain, Ajay
dc.contributor.author Ramasamy, Anantharaman
dc.contributor.author Bajaj, Retesh
dc.contributor.author Bourantas, Christos V.
dc.date.accessioned 2025-05-10T17:12:46Z
dc.date.available 2025-05-10T17:12:46Z
dc.date.issued 2022
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Erdogan, Emrah; Jain, Ajay; Ramasamy, Anantharaman; Bajaj, Retesh; Moon, James; Deaner, Andrew; Tufaro, Vincenzo; Pugliese, Francesca; Mathur, Anthony; Baumbach, Andreas; Bourantas, Christos V.] Barts Hlth NHS Trust, Barts Heart Ctr, Dept Cardiol, London, England; [Erdogan, Emrah; Cooper, Jackie; Ramasamy, Anantharaman; Bajaj, Retesh; Tufaro, Vincenzo; Serruys, Patrick W.; Pugliese, Francesca; Mathur, Anthony; Baumbach, Andreas; Bourantas, Christos V.] Queen Mary Univ London, William Harvey Res Inst, Ctr Cardiovasc Med & Devices, London, England; [Erdogan, Emrah] Yuzuncu Yil Univ, Fac Med, Dept Cardiol, Van, Turkey; [Huang, Xingru; Zhang, Qianni] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London, England; [Torii, Ryo] UCL, Dept Mech Engn, London, England; [Moon, James; Bourantas, Christos V.] UCL, Inst Cardiovasc Sci, London, England; [Costa, Christos] Queen Mary Univ London, Barts & London Sch Med & Dent, London, England; [Garcia-Garcia, Hector M.] MedStar Washington Hosp Ctr, Dept Cardiol, Washington, DC 20523 USA; [Serruys, Patrick W.] Imperial Coll, Fac Med, Natl Heart & Lung Inst, London, England; [Dijkstra, Jouke] Leiden Univ, Med Ctr, Div Image Proc, Dept Radiol, Leiden, Netherlands en_US
dc.description Huang, Xingru/0000-0003-3971-8434; Moon, James/0000-0001-8071-1491; Bajaj, Retesh/0000-0001-7424-0419; Zhang, Qianni/0000-0001-7685-2187; Mathur, Anthony/0000-0001-7941-9653; Torii, Ryo/0000-0001-9479-8719; Erdogan, Emrah/0000-0003-2329-6310 en_US
dc.description.abstract Background Volumetric intravascular ultrasound (IVUS) analysis is currently performed at a fixed frame interval, neglecting the cyclic changes in vessel dimensions occurring during the cardiac cycle that can affect the reproducibility of the results. Analysis of end-diastolic (ED) IVUS frames has been proposed to overcome this limitation. However, at present, there is lack of data to support its superiority over conventional IVUS. Objectives The present study aims to compare the reproducibility of IVUS volumetric analysis performed at a fixed frame interval and at the ED frames, identified retrospectively using a novel deep-learning methodology. Methods IVUS data acquired from 97 vessels were included in the present study; each vessel was segmented at 1 mm interval (conventional approach) and at ED frame twice by an expert analyst. Reproducibility was tested for the following metrics; normalized lumen, vessel and total atheroma volume (TAV), and percent atheroma volume (PAV). Results The mean length of the analyzed segments was 50.0 +/- 24.1 mm. ED analysis was more reproducible than the conventional analysis for the normalized lumen (mean difference: 0.76 +/- 4.03 mm(3) vs. 1.72 +/- 11.37 mm(3); p for the variance of differences ratio < 0.001), vessel (0.30 +/- 1.79 mm(3) vs. -0.47 +/- 10.26 mm(3); p < 0.001), TAV (-0.46 +/- 4.03 mm(3) vs. -2.19 +/- 14.39 mm(3); p < 0.001) and PAV (-0.12 +/- 0.59% vs. -0.34 +/- 1.34%; p < 0.001). Results were similar when the analysis focused on the 10 mm most diseased segment. The superiority of the ED approach was due to a more reproducible detection of the segment of interest and to the fact that it was not susceptible to the longitudinal motion of the IVUS probe and the cyclic changes in vessel dimensions during the cardiac cycle. Conclusions ED IVUS segmentation enables more reproducible volumetric analysis and quantification of TAV and PAV that are established end points in longitudinal studies assessing the efficacy of novel pharmacotherapies. Therefore, it should be preferred over conventional IVUS analysis as its higher reproducibility is expected to have an impact on the sample size calculation for the primary end point. en_US
dc.description.sponsorship NIHR Barts Biomedical Research Centre; British Heart Foundation [PG/17/18/32883]; Rosetrees Trust [A1773]; Turkish Society of Cardiology; University College London Biomedical Resource Centre [BRC492B] en_US
dc.description.sponsorship NIHR Barts Biomedical Research Centre; British Heart Foundation, Grant/Award Number: PG/17/18/32883; Rosetrees Trust, Grant/Award Number: A1773; Turkish Society of Cardiology; University College London Biomedical Resource Centre, Grant/Award Number: BRC492B en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1002/ccd.29917
dc.identifier.endpage 713 en_US
dc.identifier.issn 1522-1946
dc.identifier.issn 1522-726X
dc.identifier.issue 3 en_US
dc.identifier.pmid 34402586
dc.identifier.scopus 2-s2.0-85112790244
dc.identifier.scopusquality Q2
dc.identifier.startpage 706 en_US
dc.identifier.uri https://doi.org/10.1002/ccd.29917
dc.identifier.uri https://hdl.handle.net/20.500.14720/7994
dc.identifier.volume 99 en_US
dc.identifier.wos WOS:000685444200001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Intravascular Ultrasound en_US
dc.subject Machine Learning en_US
dc.subject Near-Infrared Spectroscopy en_US
dc.title End-Diastolic Segmentation of Intravascular Ultrasound Images Enables More Reproducible Volumetric Analysis of Atheroma Burden en_US
dc.type Article en_US

Files