YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Mapping Regional Forest Fire Probability Using Artificial Neural Network Model in a Mediterranean Forest Ecosystem

dc.authorid Donmez, Cenk/0000-0002-7788-3839
dc.authorid Berberoglu, Zehra/0009-0001-6113-5799
dc.authorscopusid 35200042700
dc.authorscopusid 57207870334
dc.authorscopusid 22978913900
dc.authorwosid Berberoglu, Suha/O-4805-2014
dc.authorwosid Satir, Onur/Q-7885-2018
dc.authorwosid Dönmez, Cenk/G-1750-2015
dc.contributor.author Satir, Onur
dc.contributor.author Berberoglu, Suha
dc.contributor.author Donmez, Cenk
dc.date.accessioned 2025-05-10T17:39:25Z
dc.date.available 2025-05-10T17:39:25Z
dc.date.issued 2016
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Satir, Onur] Yuzuncu Yil Univ, Fac Agr, Dept Landscape Architecture, Van, Turkey; [Berberoglu, Suha; Donmez, Cenk] Cukurova Univ, Fac Agr, Dept Landscape Architecture, Adana, Turkey en_US
dc.description Donmez, Cenk/0000-0002-7788-3839; Berberoglu, Zehra/0009-0001-6113-5799 en_US
dc.description.abstract Forest fires are one of the most important factors in environmental risk assessment and it is the main cause of forest destruction in the Mediterranean region. Forestlands have a number of known benefits such as decreasing soil erosion, containing wild life habitats, etc. Additionally, forests are also important player in carbon cycle and decreasing the climate change impacts. This paper discusses forest fire probability mapping of a Mediterranean forestland using a multiple data assessment technique. An artificial neural network (ANN) method was used to map forest fire probability in Upper Seyhan Basin (USB) in Turkey. Multi-layer perceptron (MLP) approach based on back propagation algorithm was applied in respect to physical, anthropogenic, climate and fire occurrence datasets. Result was validated using relative operating characteristic (ROC) analysis. Coefficient of accuracy of the MLP was 0.83. Landscape features input to the model were assessed statistically to identify the most descriptive factors on forest fire probability mapping using the Pearson correlation coefficient. Landscape features like elevation (R = -0.43), tree cover (R = 0.93) and temperature (R = 0.42) were strongly correlated with forest fire probability in the USB region. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/19475705.2015.1084541
dc.identifier.endpage 1658 en_US
dc.identifier.issn 1947-5705
dc.identifier.issn 1947-5713
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-84941249284
dc.identifier.scopusquality Q1
dc.identifier.startpage 1645 en_US
dc.identifier.uri https://doi.org/10.1080/19475705.2015.1084541
dc.identifier.uri https://hdl.handle.net/20.500.14720/14889
dc.identifier.volume 7 en_US
dc.identifier.wos WOS:000380171900010
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Forest Fire Probability And Hazard en_US
dc.subject Landscape Feature en_US
dc.subject Weighting en_US
dc.subject Artificial Neural Network en_US
dc.subject Mediterranean Region en_US
dc.subject Fire Weather Index en_US
dc.title Mapping Regional Forest Fire Probability Using Artificial Neural Network Model in a Mediterranean Forest Ecosystem en_US
dc.type Article en_US

Files