YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Slash Maxwell Distribution: Definition, Modified Maximum Likelihood Estimation and Applications

dc.authorid Acitas, Sukru/0000-0002-4131-0086
dc.authorscopusid 40460949100
dc.authorscopusid 57524658600
dc.authorscopusid 6506973358
dc.authorwosid Senoglu, Birdal/Aag-9300-2020
dc.authorwosid Arslan, Talha/B-9217-2013
dc.authorwosid Acitas, Sukru/O-5507-2018
dc.contributor.author Acitas, Sukru
dc.contributor.author Arslan, Talha
dc.contributor.author Senoglu, Birdal
dc.date.accessioned 2025-05-10T17:34:53Z
dc.date.available 2025-05-10T17:34:53Z
dc.date.issued 2020
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Acitas, Sukru] Eskisehir Tech Univ, Dept Stat, TR-26470 Eskisehir, Turkey; [Arslan, Talha] Van Yuzuncu Yil Univ, Dept Econometr, TR-65080 Van, Turkey; [Senoglu, Birdal] Ankara Univ, Dept Stat, TR-06100 Ankara, Turkey en_US
dc.description Acitas, Sukru/0000-0002-4131-0086 en_US
dc.description.abstract In this study slash Maxwell (SM) distribution, defined as a ratio of a Maxwell random variate to a power of an independent uniform random variate, is introduced. Its stochastic representation and some distributional properties such as moments, skewness and kurtosis measures are provided. The maximum likelihood (ML) method is used for estimating the unknown parameters. However, closed forms of the ML estimators cannot be obtained since the likelihood equations include nonlinear functions of the unknown parameters. We therefore use Tiku's (1967,1968) modified maximum likelihood (MML) methodology which allows to obtain explicit forms of the estimators. Some asymptotic properties of the MML estimators are derived. A Monte-Carlo simulation study is also carried out to compare the performances of the ML and MML estimators. Two data sets taken from the literature are modelled using the SM distribution in application part of the study. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.35378/gujs.539929
dc.identifier.endpage 263 en_US
dc.identifier.issn 2147-1762
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85086759161
dc.identifier.scopusquality Q3
dc.identifier.startpage 249 en_US
dc.identifier.trdizinid 362571
dc.identifier.uri https://doi.org/10.35378/gujs.539929
dc.identifier.uri https://hdl.handle.net/20.500.14720/13947
dc.identifier.volume 33 en_US
dc.identifier.wos WOS:000519536100019
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Gazi Univ en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Maxwell en_US
dc.subject Slashing Methodology en_US
dc.subject Stochastic Representation en_US
dc.subject Modified Maximum Likelihood en_US
dc.title Slash Maxwell Distribution: Definition, Modified Maximum Likelihood Estimation and Applications en_US
dc.type Article en_US

Files