YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The Prediction of Live Weight of Hair Goats Through Penalized Regression Methods: Lasso and Adaptive Lasso

dc.authorscopusid 57190837087
dc.authorwosid Akkol, Suna/Abn-9576-2022
dc.contributor.author Akkol, Suna
dc.date.accessioned 2025-05-10T17:44:03Z
dc.date.available 2025-05-10T17:44:03Z
dc.date.issued 2018
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Akkol, Suna] Yuzuncu Yil Univ, Fac Agr, Dept Anim Sci, Biometry & Genet Unit, Van, Turkey en_US
dc.description.abstract The least absolute selection and shrinkage operator (LASSO) and adaptive LASSO methods have become a popular model in the last decade, especially for data with a multicollinearity problem. This study was conducted to estimate the live weight (LW) of Hair goats from biometric measurements and to select variables in order to reduce the model complexity by using penalized regression methods: LASSO and adaptive LASSO for gamma = 0.5 and gamma = 1. The data were obtained from 132 adult goats in Honaz district of Denizli province. Age, gender, forehead width, ear length, head length, chest width, rump height, withers height, back height, chest depth, chest girth, and body length were used as explanatory variables. The adjusted coefficient of determination (R-adj(2)), root mean square error (RMSE), Akaike's information criterion (AIC), Schwarz Bayesian criterion (SBC), and average square error (ASE) were used in order to compare the effectiveness of the methods. It was concluded that adaptive LASSO (gamma = 1) estimated the LW with the highest accuracy for both male (R-adj(2 )= 0.9048; RMSE = 3.6250; AIC = 79.2974; SBC = 65.2633; ASE = 7.8843) and female (R-adj(2 ) = 0.7668; RMSE = 4.4069; AIC = 392.5405; SBC = 308.9888; ASE = 18.2193) Hair goats when all the criteria were considered. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.5194/aab-61-451-2018
dc.identifier.endpage 458 en_US
dc.identifier.issn 0003-9438
dc.identifier.issn 2363-9822
dc.identifier.issue 4 en_US
dc.identifier.pmid 32175452
dc.identifier.scopus 2-s2.0-85056831699
dc.identifier.scopusquality Q3
dc.identifier.startpage 451 en_US
dc.identifier.uri https://doi.org/10.5194/aab-61-451-2018
dc.identifier.uri https://hdl.handle.net/20.500.14720/16059
dc.identifier.volume 61 en_US
dc.identifier.wos WOS:000450424600001
dc.identifier.wosquality Q2
dc.institutionauthor Akkol, Suna
dc.language.iso en en_US
dc.publisher Copernicus Gesellschaft Mbh en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title The Prediction of Live Weight of Hair Goats Through Penalized Regression Methods: Lasso and Adaptive Lasso en_US
dc.type Article en_US

Files