YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Sequential Modelling for Carbohydrate and Bioethanol Production From Chlorella Saccharophila Ccala 258: a Complementary Experimental and Theoretical Approach for Microalgal Bioethanol Production

dc.authorid Onay, Melih/0000-0002-9378-0856
dc.authorscopusid 56271768600
dc.authorwosid Onay, Melih/Gok-2524-2022
dc.contributor.author Onay, Melih
dc.date.accessioned 2025-05-10T17:14:47Z
dc.date.available 2025-05-10T17:14:47Z
dc.date.issued 2022
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Onay, Melih] Van Yuzuncu Yil Univ, Dept Environm Engn, Computat & Expt Biochem Lab, TR-65080 Van, Turkey en_US
dc.description Onay, Melih/0000-0002-9378-0856 en_US
dc.description.abstract Bioethanol production from microalgal biomass is an attractive concept, and theoretical methods by which bioenergy can be produced indicate saving in both time and efficiency. The aim of the present study was to investigate the efficiencies of carbohydrate and bioethanol production by Chlorella saccharophila CCALA 258 using experimental, semiempirical, and theoretical methods, such as response surface methods (RSMs) and an artificial neural network (ANN) through sequential modeling. In addition, the interactive response surface modeling for determining the optimum conditions for the variables was assessed. The results indicated that the maximum bioethanol concentration was 11.20 g/L using the RSM model and 11.17 g/L using the ANN model under optimum conditions of 6% (v/v %) substrate and 4% (v/v %) inoculum at 96-h fermentation, pH 6, and 40 degrees C. In addition, the value of the experimental data for carbohydrate concentration was 0.2510 g/g biomass at ANN with the maximums of 50% (v/v) wastewater concentration, 4% (m/m) hydrogen peroxide concentration, and 6000 U/mL enzyme activity. Finally, although the RSM model was more effective than the ANN model for predicting bioethanol concentration, the ANN model yielded more precise values than the RSM model for carbohydrate concentration. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s11356-021-16831-w
dc.identifier.endpage 14332 en_US
dc.identifier.issn 0944-1344
dc.identifier.issn 1614-7499
dc.identifier.issue 10 en_US
dc.identifier.pmid 34608581
dc.identifier.scopus 2-s2.0-85116343657
dc.identifier.scopusquality Q1
dc.identifier.startpage 14316 en_US
dc.identifier.uri https://doi.org/10.1007/s11356-021-16831-w
dc.identifier.uri https://hdl.handle.net/20.500.14720/8433
dc.identifier.volume 29 en_US
dc.identifier.wos WOS:000703369500001
dc.identifier.wosquality Q1
dc.institutionauthor Onay, Melih
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Interactive Response Surface Modeling en_US
dc.subject Artificial Neural Network en_US
dc.subject Flocculants en_US
dc.subject Wastewater en_US
dc.subject Hydrogen Peroxide en_US
dc.subject Alpha-Amylase en_US
dc.subject Amyloglycosidase en_US
dc.subject Fermentation en_US
dc.title Sequential Modelling for Carbohydrate and Bioethanol Production From Chlorella Saccharophila Ccala 258: a Complementary Experimental and Theoretical Approach for Microalgal Bioethanol Production en_US
dc.type Article en_US

Files