YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Cross-Sectional Angle Prediction of Lipid-Rich and Calcified Tissue on Computed Tomography Angiography Images

dc.authorid Zhang, Xiaotong/0000-0001-6085-2844
dc.authorscopusid 58700989300
dc.authorscopusid 15753317700
dc.authorscopusid 57192065438
dc.authorscopusid 57190865844
dc.authorscopusid 24343922100
dc.authorscopusid 57225190308
dc.authorscopusid 15822122100
dc.authorwosid Dijkstra, Jouke/C-2917-2012
dc.contributor.author Zhang, Xiaotong
dc.contributor.author Broersen, Alexander
dc.contributor.author Sokooti, Hessam
dc.contributor.author Ramasamy, Anantharaman
dc.contributor.author Kitslaar, Pieter
dc.contributor.author Parasa, Ramya
dc.contributor.author Dijkstra, Jouke
dc.date.accessioned 2025-05-10T17:23:55Z
dc.date.available 2025-05-10T17:23:55Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Zhang, Xiaotong; Broersen, Alexander; Dijkstra, Jouke] Leiden Univ, Div Image Proc Radiol, Med Ctr, Leiden, Netherlands; [Ramasamy, Anantharaman; Parasa, Ramya; Bourantas, Christos V.] Barts Hlth NHS Trust, Cardiol Barts Heart Ctr, London, England; [Sokooti, Hessam; Kitslaar, Pieter] Med Med Imaging, Leiden, Netherlands; [Ramasamy, Anantharaman; Parasa, Ramya; Bourantas, Christos V.] Queen Mary Univ London, William Harvey Res Inst, Ctr Cardiovasc Med & Devices, London, England; [Karaduman, Medeni] Van Yuzuncu Yil Univ, Cardiol, Van, Turkiye; [Mohammed, Amear Souded Ali Jan] Queen Mary Univ London, Sch Engn & Mat Sci, London, England; [Parasa, Ramya] Essex Cardiothorac Ctr, Basildon, England en_US
dc.description Zhang, Xiaotong/0000-0001-6085-2844 en_US
dc.description.abstract PurposeThe assessment of vulnerable plaque characteristics and distribution is important to stratify cardiovascular risk in a patient. Computed tomography angiography (CTA) offers a promising alternative to invasive imaging but is limited by the fact that the range of Hounsfield units (HU) in lipid-rich areas overlaps with the HU range in fibrotic tissue and that the HU range of calcified plaques overlaps with the contrast within the contrast-filled lumen. This paper is to investigate whether lipid-rich and calcified plaques can be detected more accurately on cross-sectional CTA images using deep learning methodology.MethodsTwo deep learning (DL) approaches are proposed, a 2.5D Dense U-Net and 2.5D Mask-RCNN, which separately perform the cross-sectional plaque detection in the Cartesian and polar domain. The spread-out view is used to evaluate and show the prediction result of the plaque regions. The accuracy and F1-score are calculated on a lesion level for the DL and conventional plaque detection methods.ResultsFor the lipid-rich plaques, the median and mean values of the F1-score calculated by the two proposed DL methods on 91 lesions were approximately 6 and 3 times higher than those of the conventional method. For the calcified plaques, the F1-score of the proposed methods was comparable to those of the conventional method. The median F1-score of the Dense U-Net-based method was 3% higher than that of the conventional method.ConclusionThe two methods proposed in this paper contribute to finer cross-sectional predictions of lipid-rich and calcified plaques compared to studies focusing only on longitudinal prediction. The angular prediction performance of the proposed methods outperforms the convincing conventional method for lipid-rich plaque and is comparable for calcified plaque. en_US
dc.description.sponsorship Chinese Government Scholarship [202108310010]; Chinese Government Scholarship en_US
dc.description.sponsorship This work was supported by Chinese Government Scholarship under Grant 202108310010. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s11548-024-03086-2
dc.identifier.endpage 981 en_US
dc.identifier.issn 1861-6410
dc.identifier.issn 1861-6429
dc.identifier.issue 5 en_US
dc.identifier.pmid 38478204
dc.identifier.scopus 2-s2.0-85187651538
dc.identifier.scopusquality Q2
dc.identifier.startpage 971 en_US
dc.identifier.uri https://doi.org/10.1007/s11548-024-03086-2
dc.identifier.uri https://hdl.handle.net/20.500.14720/11032
dc.identifier.volume 19 en_US
dc.identifier.wos WOS:001182366400002
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Plaque Detection en_US
dc.subject Spread-Out View en_US
dc.subject Cta en_US
dc.subject 2.5D en_US
dc.subject Dense U-Net en_US
dc.subject Mask R-Cnn en_US
dc.title Cross-Sectional Angle Prediction of Lipid-Rich and Calcified Tissue on Computed Tomography Angiography Images en_US
dc.type Article en_US

Files