YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Sex Estimation From the Paranasal Sinus Volumes Using Semiautomatic Segmentation, Discriminant Analyses, and Machine Learning Algorithms

dc.authorid Tastekin, Burak/0000-0002-8617-1059
dc.authorid Etli, Yasin/0000-0002-7369-6083
dc.authorid Asirdizer, Mahmut/0000-0001-7596-5892
dc.authorscopusid 55429723100
dc.authorscopusid 36009433000
dc.authorscopusid 57193070823
dc.authorscopusid 13005120600
dc.authorscopusid 57218259913
dc.authorscopusid 6602339880
dc.authorwosid Sasani, Hadi/Aba-5166-2020
dc.authorwosid Asirdizer, Mahmut/Aaa-2897-2020
dc.authorwosid Etli, Yasin/Iam-4569-2023
dc.authorwosid Hekimoglu, Yavuz/A-8409-2017
dc.authorwosid Taşteki̇n, Burak/Aaj-7299-2021
dc.contributor.author Hekimoglu, Yavuz
dc.contributor.author Sasani, Hadi
dc.contributor.author Etli, Yasin
dc.contributor.author Keskin, Siddik
dc.contributor.author Tastekin, Burak
dc.contributor.author Asirdizer, Mahmut
dc.date.accessioned 2025-05-10T17:18:08Z
dc.date.available 2025-05-10T17:18:08Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Hekimoglu, Yavuz] Ankara City Hosp, Ankara, Turkiye; [Sasani, Hadi] Namik Kemal Univ, Med Fac, Istanbul, Turkiye; [Etli, Yasin] Selcuk Univ, Med Fac Hosp, Dept Forens Med, Konya, Turkiye; [Keskin, Siddik] Van Yuzuncu Yil Univ, Med Sch, Biostat Dept, Van, Turkiye; [Tastekin, Burak] Ankara City Hosp, Clin Forens Med, Ankara, Turkiye; [Asirdizer, Mahmut] Med Fac Bahcesehir Univ, Forens Med Dept, Med Fac, Batman St 66, TR-34734 Istanbul, Turkiye en_US
dc.description Tastekin, Burak/0000-0002-8617-1059; Etli, Yasin/0000-0002-7369-6083; Asirdizer, Mahmut/0000-0001-7596-5892 en_US
dc.description.abstract The aims of this study were to determine whether paranasal sinus volumetric measurements differ according to sex, age group, and right-left side and to determine the rate of sexual dimorphism using discriminant function analysis and machine learning algorithms. The study included paranasal computed tomography images of 100 live individuals of known sex and age. The paranasal sinuses were marked using semiautomatic segmentation and their volumes and densities were measured. Sex determination using discriminant analyses and machine learning algorithms was performed. Males had higher mean volumes of all paranasal sinuses than females (P < 0.05); however, there were no statistically significant differences between age groups or sides (P > 0.05). The paranasal sinus volumes of females were more dysmorphic during sex determination. The frontal sinus volume had the highest accuracy, whereas the sphenoid sinus volume was the least dysmorphic. In this study, although there was moderate sexual dimorphism in paranasal sinus volumes, the use of machine learning methods increased the accuracy of sex estimation. We believe that sex estimation rates will be significantly higher in future studies that combine linear measurements, volumetric measurements, and machine-learning algorithms. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1097/PAF.0000000000000842
dc.identifier.endpage 320 en_US
dc.identifier.issn 0195-7910
dc.identifier.issn 1533-404X
dc.identifier.issue 4 en_US
dc.identifier.pmid 37235867
dc.identifier.scopus 2-s2.0-85178496068
dc.identifier.scopusquality Q3
dc.identifier.startpage 311 en_US
dc.identifier.uri https://doi.org/10.1097/PAF.0000000000000842
dc.identifier.uri https://hdl.handle.net/20.500.14720/9582
dc.identifier.volume 44 en_US
dc.identifier.wos WOS:001208558600006
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Lippincott Williams & Wilkins en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Paranasal Sinus Volume en_US
dc.subject Discriminant Function Analysis en_US
dc.subject Identification en_US
dc.subject Anthropology en_US
dc.subject Machine Learning en_US
dc.subject Artificial Intelligence en_US
dc.title Sex Estimation From the Paranasal Sinus Volumes Using Semiautomatic Segmentation, Discriminant Analyses, and Machine Learning Algorithms en_US
dc.type Article en_US

Files