YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Sex Estimation Using Foramen Magnum Measurements, Discriminant Analyses and Artificial Neural Networks on an Eastern Turkish Population Sample

dc.authorid Demir, Ugur/0000-0003-3266-2861
dc.authorid Asirdizer, Mahmut/0000-0001-7596-5892
dc.authorid Etli, Yasin/0000-0002-7369-6083
dc.authorscopusid 57194634175
dc.authorscopusid 57193070823
dc.authorscopusid 6602339880
dc.authorscopusid 55429723100
dc.authorscopusid 13005120600
dc.authorscopusid 57226337697
dc.authorscopusid 55682194900
dc.authorwosid Celbiş, Osman/Abe-2803-2021
dc.authorwosid Etli, Yasin/Iam-4569-2023
dc.authorwosid Asirdizer, Mahmut/Aaa-2897-2020
dc.authorwosid Kartal, Erhan/Aax-4265-2020
dc.authorwosid Demir, Uğur/Gqi-4632-2022
dc.authorwosid Yavuz, Alpaslan/H-3947-2014
dc.authorwosid Hekimoglu, Yavuz/A-8409-2017
dc.contributor.author Kartal, Erhan
dc.contributor.author Etli, Yasin
dc.contributor.author Asirdizer, Mahmut
dc.contributor.author Hekimoglu, Yavuz
dc.contributor.author Keskin, Siddik
dc.contributor.author Demir, Ugur
dc.contributor.author Celbis, Osman
dc.date.accessioned 2025-05-10T17:20:35Z
dc.date.available 2025-05-10T17:20:35Z
dc.date.issued 2022
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Kartal, Erhan] Yil Univ, Med Fac Van Yuzuncu, Dept Forens Med, Forens Med, Van, Turkey; [Etli, Yasin] Selcuk Univ, Dept Forens Med, Med Fac Hosp, Forens Med, Konya, Turkey; [Asirdizer, Mahmut] Bahcesehir Univ, Dept Forens Med, Med Fac, Forens Med, Istanbul, Turkey; [Hekimoglu, Yavuz] Hlth Sci Univ, Forens Med, Ankara City Hosp, Ankara, Turkey; [Keskin, Siddik] Van Yuzuncu Yil Univ, Biostat Dept, Med Sch, Biostat, Van, Turkey; [Demir, Ugur] Hlth Sci Univ, Tokat Hosp, Forens Med, Tokat, Turkey; [Yavuz, Alparslan] Hlth Sci Univ, Dept Radiol, Radiol, Antalya Training & Res Hosp, Antalya, Turkey; [Celbis, Osman] Inonu Univ, Dept Forens Med, Med Fac, Forens Med, Malatya, Turkey; [Asirdizer, Mahmut] Bahcesehir Univ, Forens Med Dept, Med Fac, Batman Sk 66, TR-34734 Istanbul, Turkey en_US
dc.description Demir, Ugur/0000-0003-3266-2861; Asirdizer, Mahmut/0000-0001-7596-5892; Etli, Yasin/0000-0002-7369-6083 en_US
dc.description.abstract Background: Although many studies have been conducted using the foramen magnum for sex estimation, recent findings have indicated that the discriminant and regression models obtained from the foramen magnum may not be reliable. Artificial Neural Networks, was used as a classification technique in sex estimation studies on some other bones, did not used in sex estimation studies on the foramen magnum until now. The aim of this study was sex estimation on an Eastern Turkish population sample using foramen magnum measurements, discriminant analyses and Artificial Neural Networks. Methodology: The study was performed on the CT images of a total of 720 cases, comprising 360 males and 360 females. For sex estimation, discriminant analysis and Artificial Neural Networks were used. Results: The accuracy rate was 86.7% with discriminant analysis and when sex estimation accuracy was deter-mined according to cases with posterior probabilities above 95%, the accuracy ranged from 0% to 33.3%. With the use of the discriminant formulas of 2 other studies, obtained from different Turkish samples, sex could be determined at a rate of 84.6%. Some formulas were found to be unsuccessful in sex estimation. Sex estimation accuracy of 88.2% was achieved with Artificial Neural Networks.Conclusion: In this study, it was found that sex could be determined to some extent with discriminant formulas from other samples from the same population, although some formulas were unsuccessful. With the use of image processing techniques and machine learning algorithms, better results can be obtained in sex estimation. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.legalmed.2022.102143
dc.identifier.issn 1344-6223
dc.identifier.pmid 36084487
dc.identifier.scopus 2-s2.0-85137163376
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1016/j.legalmed.2022.102143
dc.identifier.uri https://hdl.handle.net/20.500.14720/10143
dc.identifier.volume 59 en_US
dc.identifier.wos WOS:000861005300004
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Elsevier Ireland Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Foramen Magnum en_US
dc.subject Sex Estimation en_US
dc.subject Discriminant Function Analysis en_US
dc.subject Artificial Neural Networks en_US
dc.subject Linear Discriminant Function Analysis en_US
dc.subject Stepwise Discriminant Analysis en_US
dc.title Sex Estimation Using Foramen Magnum Measurements, Discriminant Analyses and Artificial Neural Networks on an Eastern Turkish Population Sample en_US
dc.type Article en_US

Files